150 likes | 164 Views
<br>Chapter 2, page 58-62, problems 2a, 2b, 2c, 7, 9a, 9b, 9c, 10a, 10b, 16a, 16b, 16c, 19, 21, 22a, 22b, 22c, 24. <br><br>
E N D
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 2 Homework For more classes visit www.snaptutorial.com Chapter 2, page 58-62, problems 2a, 2b, 2c, 7, 9a, 9b, 9c, 10a, 10b, 16a, 16b, 16c, 19, 21, 22a, 22b, 22c, 24.
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 2 iLab Signal Sampling and Reconstruction For more classes visit www.snaptutorial.com Objectives: Use principles of signal sampling and reconstruction to construct an electronic
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 3 Homework For more classes visit www.snaptutorial.com Chapter 3 Homework Problems: 3a, 3b, 3c, 5a, 5c, 5e, 7a, 9
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 3 iLab Moving Average Digital Filters For more classes visit www.snaptutorial.com Objectives: Design, test, and implement antialiasing and anti-imaging filters to be used with a real-time, digital filtering system using a microcontroller, ADC, and DAC. Implement, test, and analyze the performance of a moving average, low-pass filter in conjunction with the filters and real-time system from the first objective.
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 4 Homework For more classes visit www.snaptutorial.com Chapter 9: Finite Impulse Response Filters, pp. 314–353 Problems: 2a, 2b, 2c, 2d, 3a, 3b, 8a, 8b, 8c, 8d, 8e, 8f, 10b, 11b, 12b, 12d, 14a, 14b
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 4 iLab Low-Pass Finite Impulse Response Filter For more classes visit www.snaptutorial.com Objectives: Design, implement, test, and analyze the performance of a finite impulse response, low-pass filter in a real-time application using the Tower microcontroller board and ADC and DAC interface board.
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 5 Homework For more classes visit www.snaptutorial.com Chapter 9: 19. Design a low pass FIR filter for a 10 kHz sampling, with a pass band edge at 2 kHz, a stop band edge at 3 kHz, and 20 dB stop band attenuation. Find the impulse response and the difference equation for the filter.
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 5 iLab Impulse Response Band Pass Filter For more classes visit www.snaptutorial.com Objectives: Design a high-order, FIR band pass using MATLAB and then to implement, test, and analyze the real-time performance of that filter on a target embedded system board. In addition, introduce and compare the numerical formats and
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 6 Homework For more classes visit www.snaptutorial.com Chapter 10 Homework Problems: 12a, 12b
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 6 iLab Infinite Impulse Response Low-Pass Filter For more classes visit www.snaptutorial.com Objectives: Design a Butterworth, low-pass filter, and then, using a bilinear transformation operation, create a digital IIR filter. The filter will then be implemented and real-time performance tested and analyzed on a target embedded system board. Results: Summarize your results in the context of your objectives.
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 7 Homework For more classes visit www.snaptutorial.com ECET 350 Practice Problems 1. A first-order Butterworth filter with a digital cut-off frequency of p/4 radians is designed for a 2 kHz sampled system. The pre-warped analog transfer function is
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 7 iLab Fourier Analysis of Time Domain Signals For more classes visit www.snaptutorial.com Objective of the lab experiment: The objective of this experiment is to perform Fourier analysis to obtain frequency domain signature of signals and systems that are measured or whose characteristics are known in time domain. Towards this end, we shall learn how to use Fourier
ECET 350 Knowledge is divine / snaptutorial.com ECET 350 Week 7 Homework For more classes visit www.snaptutorial.com ECET 350 Practice Problems 1. A first-order Butterworth filter with a digital cut-off frequency of p/4 radians is designed for a 2 kHz sampled system. The pre-warped analog transfer function is 2. The transfer function of an analog filter is H(s) = 5000/(s + 15000). If the sampling frequency is 20 kHz, the digital filter obtained using the bilinear transformation is