Introduction to Lisp - PowerPoint PPT Presentation

introduction to lisp l.
Skip this Video
Loading SlideShow in 5 Seconds..
Introduction to Lisp PowerPoint Presentation
Download Presentation
Introduction to Lisp

play fullscreen
1 / 47
Download Presentation
Introduction to Lisp
Download Presentation

Introduction to Lisp

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Introduction to Lisp For Scheme Users

  2. What Makes Lisp Different? • Built-in Support for Lists • Automatic Storage Management • Dynamic Typing • First-Class Functions • Uniform Syntax • Interactive Environment • Extensibility • History

  3. Lisp vs. Scheme • Lisp has much more built-in functions and special forms, the Scheme language definition takes 45 pages while Common Lisp takes 1029 pages) • Apart from lexical variables Lisp also has special variables • Scheme uses one name space for functions, variables, etc., Lisp doesn’t. • Scheme evaluates the function part of a function call in exactly the same way as arguments, Lisp doesn’t. • Lisp functions can have rest, optional and keyword parameters. Scheme functions only can have the equivalent of a rest parameter.

  4. Lisp vs. Scheme (2) • Lisp has block, return, go or throw,in Scheme a single function (call-with-current-continuation or call/cc) replaces all these and does much more. • Lisp has built-in packages while package-like structures can be implemented in Scheme using lexical variables. • Lisp has standard macros, Scheme doesn’t although most implementations provide macros as an extension. Still true in latest definition of Scheme? • Lisp has special forms (loop, do, dotimes, …) for looping, in Scheme the user is asked to use tail-recursion that is implemented efficiently.

  5. var constant (quote x)or ’x (set! var x) (if p a b) (lambda parms x…) (fn arg …) #t, #f, () (define var exp) (define (fn parm…) body) var constant (quote x)or ’x (setq var x) (if p a b) #’(lambda parms x…) (fn arg …) or (funcall fn arg …) t, nil, nil (defparameter var exp) (defun fn (parm…) body) Scheme vs. Lisp

  6. char-ready? char? eq? equal? eqv? even? for-each integer? map negative? pair? procedure? listen characterp eq equal eql evenp mapc integerp mapcar minusp consp functionp Scheme vs. Lisp (2)

  7. set! set-car! vector-set! string-set! setq, setf replaca, setf setf setf Scheme vs. Lisp (3)

  8. (define (foo-1 arg1 . rest) body) (define (bar arg1 arg2) body) (foo-1 1 2 3 4 5) arg1  1 rest  (2 3 4 5) (foo-1 1) arg1  1 rest  () (bar 1 2) Parameters in Scheme

  9. (defun foo-1 (arg1 &rest rest) body) (defun foo-2 (arg1 &optional (arg2 default-value)) body) (foo-1 1 2 3 4 5) arg1  1 rest  (2 3 4 5) (foo-1 1 2 3 4 5) arg1  1 rest  (2 3 4 5) (foo-2 2) arg1  2 arg2  default-value (foo-2 2 3) arg1  2 arg2  3 Parameters in Lisp

  10. (defun foo-3 (&key (op ‘+)(range 100) (n 10)) body … ) (foo-3 :n 5) op  + range  100 n  5 (foo-3 :n 20 :op ’* :range 10) op  * range  10 n  20 (foo-3) op  + range  100 n  10 Parameters in Lisp

  11. Example: Names ;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*- ;;; Code from Paradigms of Artificial Intelligence Programming ;;; Copyright (c) 1991 Peter Norvig ;;;; File intro.lisp: Miscellaneous functions from the introduction. (defun last-name (name) "Select the last name from a name represented as a list." (first (last name))) (defun first-name (name) "Select the first name from a name represented as a list." (first name)) (setf *names* '((John Q Public) (Malcolm X) (Admiral Grace Murray Hooper) (Spot) (Aristotle) (A A Milne) (Z Z Top) (Sir Larry Olivier)))

  12. Names (2) (defparameter *titles* '(Mr Mrs Miss Ms Sir Madam Dr Admiral Major General) "A list of titles that can appear at the start of a name.") (defun first-name (name) "Select the first name from a name represented as a list." (if (member (first name) *titles*) (first-name (rest name)) (first name)))

  13. scheme interp def-scheme-macro *scheme-procs* Top-level Functions A Scheme read-eval-print loop Evaluate an expression in an environment Define a Scheme macro Special Variables Some procedures to store in the global environment A Scheme Interpreter

  14. set-var! get-var set-global-var! get-global-var extend-env init-scheme-interp init-scheme-proc Auxiliary Functions Set a variable to a value Get the value of variable in an environment Set a global variable to a value Get the value of a variable from the global environment Add some variables and values to an environment Initialize some global variables Define a primitive Scheme procedure A Scheme Interpreter (2)

  15. scheme-macro scheme-macro-expand maybe-add print-proc proc Auxiliary Functions (cont.) Retrieve the Scheme macro for a symbol Macro-expand a Scheme expression Add an element to the front of a non-singleton list Print a procedure Data Type (tail-recursive version only) A Scheme procedure A Scheme Interpreter (3)

  16. interp-begin interp-call map-interp call/cc last1 length=1 Functions (continuation version only) Interpret a begin expression Interpret a function application Map interp over a list call with current continuation Previously Defined Functions Select the last element of a list Is this list of length 1? A Scheme Interpreter (4)

  17. If the expression is a symbol, look up its value in the environment If it is an atom that is not a symbol (such as a number), just return it. Otherwise, the expression must be a list. If the list starts with quote, return the quoted expression If it starts with begin, interpret each subexpression, and return the last one If it starts with set!, interpret the value and then set the variable to that value If it starts with if, then interpret the test, and depending on whether it is true or not, interpret the then-part or the else-part If it starts with lambda, build a new procedure – a closure over the current environment Otherwise, it must be a procedure application. Interpret the procedure and all it arguments, and apply the procedure value to the argument values A Basic Scheme Interpreter

  18. (defun interp (exp &optional env) "Interpret (evaluate) the expression exp in the environment env." (cond ((symbolp exp) (get-var exp env)) ((atom exp) exp) ((case (first exp) (QUOTE (second exp)) (BEGIN (last1 (mapcar #'(lambda (y) (interp y env)) (rest exp)))) (SET! (set-var! (second exp) (interp (third exp) env) env)) (IF (if (interp (second exp) env) (interp (third exp) env) (interp (fourth exp) env))) (LAMBDA (let ((parms (second exp)) (code (maybe-add 'begin (rest2 exp)))) #'(lambda (&rest args) (interp code (extend-env parms args env))))) (t ;; a procedure application (apply (interp (first exp) env) (mapcar #'(lambda (v) (interp v env)) (rest exp))))))))

  19. (defun set-var! (var val env) "Set a variable to a value, in the given or global environment." (if (assoc var env) (setf (second (assoc var env)) val) (set-global-var! var val)) val) (defun get-var (var env) "Get the value of a variable, from the given or global environment." (if (assoc var env) (second (assoc var env)) (get-global-var var))) (defun set-global-var!(var val) (setf (get var 'global-val) val)) (defun get-global-var (var) (let* ((default "unbound") (val (get var 'global-val default))) (if (eq val default) (error "Unbound scheme variable: ~a" var) val)))

  20. (defun extend-env (vars vals env) "Add some variables and values to an environment." (nconc (mapcar #'list vars vals) env))

  21. (defparameter *scheme-procs* '(+ - * / = < > <= >= cons car cdr not append list read member (null? null) (eq? eq) (equal? equal) (eqv? eql) (write prin1) (display princ) (newline terpri))) (defun init-scheme-interp () "Initialize the scheme interpreter with some global variables." ;; Define Scheme procedures as CL functions: (mapc #'init-scheme-proc *scheme-procs*) ;; Define the boolean `constants'. Unfortunately, this won't ;; stop someone from saying: (set! t nil) (set-global-var! t t) (set-global-var! nil nil)) (defun init-scheme-proc (f) "Define a Scheme procedure as a corresponding CL function." (if (listp f) (set-global-var! (first f) (symbol-function (second f))) (set-global-var! f (symbol-function f))))

  22. Syntactic Extension of the Basic Interpreter with Macros • Once we have a basic Scheme interpreter, the remaining syntax can be defined as “derived expressions” in terms of the five primitives: quote, begin, set! , if and lambda • The following forms are used (nearly) identically in Scheme and Lisp: let, let*, and, or, do, cond and case

  23. Syntactic Extension of the Basic Interpreter with Macros (2) The final three syntactic extensions are unique to Scheme: (define var val) or (define (proc-name arg …) body …) (delay expression) (letrec ((var init) …) body …)

  24. Syntactic Extension of the Basic Interpreter with Macros (3) • Macro: a form that the evaluator first expands into some other form which is then evaluated. • Macros allow the user to extendthe language, i.e. we have a programmable programming language • First, we have to change interp to allow macros • Then, we have to provide a mechanism for defining macros

  25. Macro Evaluation • Expansion, e.g. (schema-macro-expand ‘(let ((x 1) (y 2)) (+ x y))) ((lambda (x y) (+ x y)) 1 2) • Evaluation

  26. (defun interp (x &optional env) "Interpret (evaluate) the expression x in the environment env. This version handles macros." (cond ((symbolp x) (get-var x env)) ((atom x) x) ((scheme-macro (first x)) (interp (scheme-macro-expand x) env)) ((case (first x) (QUOTE (second x)) … (t (apply (interp (first x) env) (mapcar #'(lambda (v) (interp v env)) (rest x))))))))

  27. (defun scheme-macro (symbol) (and (symbolp symbol) (get symbol 'scheme-macro))) (defmacro def-scheme-macro (name parmlist &body body) "Define a Scheme macro." `(setf (get ',name 'scheme-macro) #'(lambda ,parmlist .,body))) (defun scheme-macro-expand (x) "Macro-expand this Scheme expression." (if (and (listp x) (scheme-macro (first x))) (scheme-macro-expand (apply (scheme-macro (first x)) (rest x))) x))

  28. (def-scheme-macro let (bindings &rest body) `((lambda ,(mapcar #'first bindings) . ,body) .,(mapcar #'second bindings))) (def-scheme-macro let* (bindings &rest body) (if (null bindings) `(begin .,body) `(let (,(first bindings)) (let* ,(rest bindings) . ,body)))) (def-scheme-macro and (&rest args) (cond ((null args) 'T) ((length=1 args) (first args)) (t `(if ,(first args) (and . ,(rest args)))))) (def-scheme-macro or (&rest args) (cond ((null args) 'nil) ((length=1 args) (first args)) (t (let ((var (gensym))) `(let ((,var ,(first args))) (if ,var ,var (or . ,(rest args))))))))

  29. (def-scheme-macro cond (&rest clauses) (cond ((null clauses) nil) ((length=1 (first clauses)) `(or ,(first clauses) (cond .,(rest clauses)))) ((starts-with (first clauses) 'else) `(begin .,(rest (first clauses)))) (t `(if ,(first (first clauses)) (begin .,(rest (first clauses))) (cond .,(rest clauses)))))) (def-scheme-macro case (key &rest clauses) (let ((key-val (gensym "KEY"))) `(let ((,key-val ,key)) (cond ,@(mapcar #'(lambda (clause) (if (starts-with clause 'else) clause `((member ,key-val ',(first clause)) .,(rest clause)))) clauses)))))

  30. (def-scheme-macro define (name &rest body) (if (atom name) `(begin (set! ,name . ,body) ',name) `(define ,(first name) (lambda ,(rest name) . ,body)))) (def-scheme-macro delay (computation) `(lambda () ,computation)) (def-scheme-macro let-rec (bindings &rest body) `(let ,(mapcar #'(lambda (v) (list (first v) nil)) bindings) ,@(mapcar #'(lambda (v) `(set! .,v)) bindings) .,body))

  31. A Tail-Recursive Interpreter • Lisp has many special forms for looping: do, do*, dolist, loop, … (defun element-p (element list) (loop for el in list when (eq el element) return t)) • Scheme encourages to use tail-recursion instead (define (element? element list) (cond ((null? list) #f) ((eq? element (first list)) #t) (else (element? element (rest list))))

  32. (defun interp (x &optional env) "This version is properly tail-recursive." (prog () :INTERP (return (cond ((symbolp x) (get-var x env)) ((atom x) x) ((scheme-macro (first x)) (setf x (scheme-macro-expand x))(GO :INTERP)) ((case (first x) (QUOTE (second x)) (BEGIN (pop x) ; pop off the BEGIN to get at the args ;; Now interpret all but the last expression (loop while (rest x) do (interp (pop x) env)) ;; Finally, rename the last expression as x (setf x (first x)) (GO :INTERP)) (SET! (set-var! (second x) (interp (third x) env) env)) (IF (setf x (if (interp (second x) env) (third x) (fourth x))) ; That is, rename the right expression as x (GO :INTERP)) ;; Continued on the next page

  33. ((case (first x) ;; Continuation of the previous page (LAMBDA (make-proc :env env :parms (second x) :code (maybe-add 'begin (rest2 x)))) ;; A procedure application (t (let ((proc (interp (first x) env)) (args (mapcar #'(lambda (v) (interp v env))(rest x)))) (if (proc-p proc) ;; Execute procedure with rename+goto (progn (setf x (proc-code proc)) (setf env (extend-env (proc-parms proc) args (proc-env proc))) (GO :INTERP)) ;; else apply primitive procedure (apply proc args))))))))))

  34. (defstruct (proc (:print-function print-proc)) "Represent a Scheme procedure" code (env nil) (name nil) (parms nil)) (setf *proc* (make-PROC :name ’my-proc :parms ’ (x y) :code ’ (+ x y)) (defun print-proc (proc &optional (stream *standard-output*) depth) (declare (ignore depth)) (format stream "{~a}" (or (proc-name proc) '??)))

  35. An Interpreter Supporting Call/cc • Lisp has different non-local exits, e.g. catch and throw (defun print-table (l) (catch ’not-a-number (mapcar #’print-sqrt-abs l))) (defun print-sqrt-abs (x) (print (sqrt (abs (must-be-number x))))) (defun must-be-number (x) (if (numberp x) x (throw ’not-a-number “huh?”)))  (print-table ’(1 4 -9 x 10 20)) 1, 2, 3, “huh?”

  36. An Interpreter Supporting Call/cc • Scheme on the contrary has only one construct, call/cc: (define (print-table l) (call/cc (lambda (escape) (set! not-a-number escape) (map print-sqrt-abs l))) (define (print-sqrt-abs x) (write (sqrt (abs (must-be-number x))))) (define (must-be-number x) (if (numberp x) x (not-a-number “huh?”)))  (print-table ’(1 4 -9 x 10 20)) 1, 2, 3, “huh?”

  37. Continuations in Scheme Consider the Scheme expression (* (f1 exp1) (f2 (f3 4) (f5 exp2))) The continuation of (f3 4) in that expression is the function (lambda (VoE) (* (f1 exp1) (f2 VoE (f5 exp2)))) The continuationc of an expression e is a function that awaits the value of e and proceeds the computation.

  38. Continuations in Scheme (2) Again, consider the Scheme expression (* (f1 exp1) (f2 (f3 4) (f5 exp2))) The continuation of (f2 (f3 4) (f5 exp2)) in that expression is the function (lambda (val) (* (f1 exp1) val))

  39. Continuations in Scheme (3) In Scheme, every expression has a continuation and the evaluator always has a function at hand representing that continuation. Furthermore, Scheme has a primitive function to get access to this continuation, i.e. call-with-current-continuation or call/cc. call/cc requires a function of one argument, and it immediately call this function thereby passing it the continuation of the entire call/cc expression.

  40. A Continuation Example (define aFuture '()) (display (+ 2 (call/cc (lambda (cont) (set! aFuture cont) 8))))

  41. Another Continuation Example:Error handling (define error '()) (call/cc (lambda (cont) (set! error cont) (p)))

  42. A Last Continuation Example:Chronological Backtracking (define (integer) (amb 1 (+ 1 (integer)))) (define (prime) (let ((n (integer))) (if (prime? n) n (fail)) (def-scheme-macro amb (x y) ‘(random-choice (lambda () ,x) (lambda () ,y)))

  43. A Last Continuation Example:Chronological Backtracking (2) (define backtrack-points '()) (define (fail) (let ((last-choice (first backtrack-points))) (set! backtrack-points (rest backtrack-points)) (last-choice))) (define (random-choice f g) (if (=1 (random 2))(choose-first f g) (choose-first g f))) (define (choose-first f g) (call/cc (lambda (k) (set! backtrack-points (cons (lambda () (k (g))) backtrack-points)) (f))))

  44. (defun interp (x env cc) "Evaluate the expression x in the environment env, and pass the result to the continuation cc." (cond ((symbolp x) (funcall cc (get-var x env))) ((atom x) (funcall cc x)) ((scheme-macro (first x))(interp (scheme-macro-expand x) env cc)) ((case (first x) (QUOTE (funcall cc (second x))) (BEGIN (interp-begin (rest x) env cc)) (SET! (interp (third x) env #'(lambda (val) (funcall cc (set-var! (second x) val env))))) (IF (interp (second x) env #'(lambda (pred) (interp (if pred (third x) (fourth x)) env cc)))) (LAMBDA (let ((parms (second x)) (code (maybe-add 'begin (rest2 x)))) (funcall cc #'(lambda (cont &rest args) (interp code (extend-env parms args env) cont))))) (t (interp-call x env cc))))))

  45. (defun scheme (&optional x) "A Scheme read-eval-print loop (using interp). Handles call/cc by explicitly passing continuations." (init-scheme-interp) (if x (interp x nil #'print) (loop (format t "~&==> ") (interp (read) nil #'print))))

  46. (defun interp-begin (body env cc) "Interpret each element of BODY, passing the last to CC." (interp (first body) env #'(lambda (val) (if (null (rest body)) (funcall cc val) (interp-begin (rest body) env cc))))) (defun interp-call (call env cc) "Interpret the call (f x...) and pass the result to CC." (map-interp call env #'(lambda (fn-and-args) (apply (first fn-and-args) cc (rest fn-and-args))))) (defun map-interp (list env cc) "Interpret each element of LIST, and pass the list to CC." (if (null list) (funcall cc nil) (interp (first list) env #'(lambda (x) (map-interp (rest list) env #'(lambda (y) (funcall cc (cons x y))))))))

  47. (defun init-scheme-proc (f) "Define a Scheme primitive procedure as a CL function." (if (listp f) (set-global-var! (first f) #'(lambda (cont &rest args) (funcall cont (apply (second f) args)))) (init-scheme-proc (list f f)))) (defun call/cc (cc computation) "Make the continuation accessible to a Scheme procedure." (funcall computation cc ;; Package up CC into a Scheme function: #'(lambda (cont val) (declare (ignore cont)) (funcall cc val)))) ;; Now install call/cc in the global environment (set-global-var! 'call/cc #'call/cc) (set-global-var! 'call-with-current-continuation #'call/cc)