slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Presentation created by T. Trimpe 2007 sciencespot/ PowerPoint Presentation
Download Presentation
Presentation created by T. Trimpe 2007 sciencespot/

Loading in 2 Seconds...

play fullscreen
1 / 12

Presentation created by T. Trimpe 2007 sciencespot/ - PowerPoint PPT Presentation


  • 286 Views
  • Uploaded on

DNA Keychains. Presentation created by T. Trimpe 2007 http://sciencespot.net/ Presentation was developed for use with DNA Jewelry lesson at http://accessexcellence.org/AE/AEC/AEF/1995/ross_jewelry.html Graphic from http://nanopedia.case.edu/image/dna.jpg.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Presentation created by T. Trimpe 2007 sciencespot/' - Mia_John


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

DNA Keychains

Presentation created by T. Trimpe 2007 http://sciencespot.net/

Presentation was developed for use with DNA Jewelry lesson at http://accessexcellence.org/AE/AEC/AEF/1995/ross_jewelry.html

Graphic from http://nanopedia.case.edu/image/dna.jpg

slide2

5. Add two SUGAR beads – one on each side – to the THICK wire.

6. Next add two PHOSPHATE beads– one on each side of the wire.

2. Choose your small beads for the nitrogen bases. You will need 6 beads of 4 different colors for a total of 24 beads. Color the key on your DNA Guide.

Part 1: Get Your Materials

1. Choose your large beads for the sugar and phosphate molecules that make up the backbone. You will need 26 beads of 2 different colors for a total of 52 beads. Color the key on your DNA Guide.

3. Get a piece of thick wire from your teacher and bend it in half.

4. Cut a piece of thin wire – 20 inches in length - and bend it in half.

slide3

Part 2: Build Your DNA Molecule

7. Place one A bead and one T bead in the middle of the THIN wire.and hold it in place at the top of the phosphate beads. Line up the THICK and THIN wires on each side and hold at the top.

8. Slide one SUGAR bead down one end of the thin wire and thread the thick wire through as you push it towards the bottom of the keychain - both wires are need to be threaded "inside" the large bead . Add another SUGAR bead on the other side in the same way.

10. Pull the large beads down towards the bottom of the keychain and pull on the ends of the thin wire to make the small beads fit tightly in place.

9. Slide one PHOSPHATE bead down one end of the thin wire and thread the thick wire through as you push it towards the bottom of the keychain - both wires are need to be threaded "inside" the large bead . Add another PHOSPHATE bead on the other side in the same way.

slide4

11. Hold one of the thin wires near the end and add a G bead and a C bead. Thread the end of the other thin wire back through the G and C beads in the opposite direction make the wires form an X shape. Pull the ends as if you were “tying” a knot.

12. Add more big beads (SUGARS & PHOSPHATES) to the backbone – TWO on each side. Thread the THIN wire through the large beads as you add the big beads to the THICK wire.

  • Continue building the DNA molecule following the same process.

Remember the process…

Thread two wires through two big beads on the sides,Cross two wires through two small beads in the middle & tie.

Thread the other end of the wire through the little beads in the opposite direction.

Remember …

Make sure you keep the bases paired correctly – A with T and G with C.

Make sure to keep your wires pulled tight as you add all of the bases.

Go slow and try not to get kinks in the THIN wire!

Pull on both ends of the thin wire to “tie” it together

slide5

Part 3: Finishing the Double Helix

14. Once you have added all the base pairs, twist the ends of the thin wire together tightly and add a key ring to the other end of the keychain.

15. Twist the ends of the thick wire and the thin wires together all at once!

16. Use the wire cutters (pliers) to cut off the ends leaving it ½ inch long. Use the pliers to “tuck” the ends in between the large beads so it won’t poke you.

17. Twist your DNA strand around a pencil or finger and gently pull on the ends to create the double helix shape.

CAUTION: Untwisting and twisting your keychain too many times will make it break!

slide6

Make A Paper Model

When you are done, color the BASES on a paper model of your DNA keychain.

Be sure the colors of the bases match exactly!

Write your name on the back of the a paper model.

Turn in your keychain and the paper model to your teacher.

slide7

Cut in half

Step 2: “Unzip” the paper model by cutting it in half longwise and glue the pieces in the correct location on your worksheet so the bases match up correctly.

DNA Replication

Step 1: After you have completed your DNA keychain, label the bases on the paper model with A, T, G, or C exactly as they are on your keychain from the bottom to the top.

slide8

Step 3: Label the empty boxes using A, T, G, or C and then color them using the colors on your DNA Guide. Remember to match the bases correctly!

A – T

T – A

G – C

C - G

Step 4: Answer the questions on the back of your worksheet.

slide9

Meiosis

Mitosis

Meiosis – Sex Cells

Mitosis – Daughter Cells

Questions

1. How do the bases in DNA pair up?

A - _____ G - _____ T - ______ C - ______

2. Compare your two “new” DNA molecules (the ones you did on the front) to your actual keychain. How does the order of the bases they compare?

3. What do we call a change in a gene or chromosome? ________________

4. What two cell division processes use DNA replication?

_________________ & _________________

5. What is created by each of the processes in #4?

T

C

A

G

The order of the bases should match the order on your keychain.

Mutation

slide10

Going Further ...

As we discussed in class, the DNA molecules consists of nitrogen base pairs. The order of the pairs determines the genetic code, which controls protein synthesis or the production of proteins.

6. What do we call a set of three nitrogen bases?

___________________ or ____________________

7. What organelle in a cell contains the DNA? ___________________

8. What organelle is the protein factory in a cell? __________________

9. How does the genetic code get to a ribosome? _______________________

10. What type of RNA assembles the proteins? ________________________

11. What are the building blocks of proteins? ______________________

12. What is another term for a protein?

____________________ chain (a natural polymer)

Triplet

Codon

Nucleus

Ribosome

Messenger RNA (mRNA)

Transfer RNA (tRNA)

Amino Acids

Polypeptide

slide11

http://stemcells.nih.gov/StaticResources/info/scireport/images/figurea6.jpghttp://stemcells.nih.gov/StaticResources/info/scireport/images/figurea6.jpg

slide12

Try It

  • DNA Replication
  • Crack the Code (Protein Synthesis)