1 / 8

A Guide to Arabic Natural Language Processing

Arabic natural language processing (NLP) is an advanced application of AI and machine learning used to understand Arabic dialects. Our focus in this article is on applying NLP in Arabic to extract semantic insights from all sources of data, be it text, audio, or video. We talk about how, at Repustate, we use NLP for sentiment analysis. We also showcase a real-world example of how we successfully provided a highly customized Arabic sentiment analysis solution for a client in Saudi Arabia.

Lily4
Download Presentation

A Guide to Arabic Natural Language Processing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Guide to Arabic Natural Language Processing

  2. Table of Content • Challenges in Arabic natural language processing • How is Arabic NLP used for sentiment analysis? • What is the process of doing sentiment analysis in Arabic tweets?

  3. Challenges in Arabic natural language processing Arabic is a very complex language, with many dialects. Arabic morphology has two fundamentals: derivational morphology, (word formation) and inflectional morphology (how words interact with the syntax). Morphological features have integrated dependencies on several linguistic factors like affixes, root-based structures, and vowels. Additionally, Arabic’s high ability for new word formations with rich semantic meanings - all pose quite a challenge for Arabic natural language processing.

  4. How is Arabic NLP used for sentiment analysis? For accurate arabic sentiment analysis, the sentiment mining tool needs to read the data directly in Arabic. For this, it needs to have an algorithm that has been trained on Arabic datasets (to hone the machine learning model) using Arabic NLP. If the tool resorts to translating text to English or any other language first, it will give wrong sentiment scores, translating to a company investing in business and operational strategies based on incorrect insights. Repustate’s Arabic sentiment analysis solution reads and understands the Arabic language in its native format. It supports standard Arabic and can be trained on three Arabic dialects - Gulf Peninsular, Levantine, and Egyptian. Our platform has its own Arabic lemmatizer, part-of-speech tagger, and sentiment models. This is how it conducts Arabic NLP tasks to understand the intent behind texts and return a corresponding classification and sentiment score.

  5. What is the process of doing sentiment analysis in Arabic tweets?

  6. Thank you! Understand your data, customers, & employees with 12X the speed and accuracy. Visit: www.repustate.com to learn more

More Related