Solving linear programs lp section 2
Download
1 / 47

Solving Linear Programs (LP Section 2) - PowerPoint PPT Presentation


  • 402 Views
  • Updated On :

Solving Linear Programs (LP Section 2). Chapter 2 (Revisited) Graphical Method Computer Solutions Using LINDO Interpreting Computer Output for LP Section 1 problems. Solving Linear Programs.

Related searches for Solving Linear Programs (LP Section 2)

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Solving Linear Programs (LP Section 2)' - Leo


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Solving linear programs lp section 2 l.jpg
Solving Linear Programs (LP Section 2)

  • Chapter 2 (Revisited)

    Graphical Method

  • Computer Solutions

    Using LINDO

    Interpreting Computer Output for LP Section 1 problems

Dr. C. Lightner Fayetteville State University


Solving linear programs l.jpg
Solving Linear Programs

  • The goal of a linear program is to find the values of your xj variables that provide the largest (or smallest) possible objective value when substituted into the objective function.

  • The Graphical Method can be used to solve the LP for these values when you have one or two decision variables. This technique helps to visualize key LP concepts.

  • Computer Programs are generally used to solve all LP problems.

  • We will learn to use the graphical method to solve small problems and gain insight into some theory behind solving LPs. Nevertheless, we will focus on using a computer software to solve our LP models.

Dr. C. Lightner Fayetteville State University


Solving lps using the graphical method chapter 2 l.jpg
Solving LPs using the Graphical MethodChapter 2

  • We begin the graphical solution process by graphing each linear constraint of the LP model on the same graph.

  • Refer to the PAR, INC example from Section 1 of your LP notes.

    Maximize 10 x1 + 9 x2

    Subject to:

    7/10 x1 + 1 x2 ≤ 630

    1/2 x1 + 5/6 x2 ≤ 600

    1 x1 + 2/3 x2 ≤ 708

    1/10 x1+ 1/4 x2 ≤ 135

    x1 ≥ 0, x2 ≥ 0

Dr. C. Lightner Fayetteville State University


Graphical method par inc l.jpg
Graphical Method: PAR, INC

  • Constraint 1 (C1):

    7/10 x1 + 1 x2≤ 630 Always graph constraints as an equality.

    In order to graph a line we need two points that fall on the line. Arbitrarily, let x1 =0. Then 7/10 (0) + x2 =630. Solving this equation for x2 gives x2 =630. Therefore one point on this line is (0, 630).

    Arbitrarily, let x2 =0. Then 7/10 x1 + (0) =630. Solving this equation for x1 gives x1 =6300/7=900. Therefore a 2nd point on this line is (900, 0). Connect the points (0, 630) and (900,0) to draw this line.

  • Determine the Feasible Side of the Line:

    In LP, on one side of the line all points are feasible (i.e. they satisfy the constraint) and on the other side all points are not feasible. For instance take the point (0,0). The point x1 =0 and x2 =0 satisfy the above constraint [7/10 * (0) + (0) is less than 630]. Thus all points that are on the side of the line containing this point will also satisfy this constraint. We put a red arrow to indicate the feasible side of the line.

Dr. C. Lightner Fayetteville State University


Graphical method par inc5 l.jpg
Graphical Method: PAR, INC

x2

C1

x1

Dr. C. Lightner Fayetteville State University


Graphical method par inc6 l.jpg
Graphical Method: PAR, INC

Constraint 2 (C2):

1/2 x1 + 5/6 x2≤ 600

In order to graph a line we need two points that fall on the line. Arbitrarily, let x1 =0. Then 1/2 (0) + 5/6 x2 =600. Solving this equation for x2 gives x2 =720. Therefore one point on this line is (0, 720).

Arbitrarily, let x2 =0. Then x1 =1200. Therefore a 2nd point on this line is (1200, 0). Connect the points (0, 720) and (1200,0) to draw this line.

  • Determine the Feasible Side of the Line:

    Use the point (0,0) as a test point. Since x1 =0 and x2 =0 satisfies the above constraint [1/2 * (0) + 5/6 (0) is less than 600]. Thus all points on the side containing the point (0,0) will satisfy this constraint. We put a red arrow to indicate the feasible side of the line.

Dr. C. Lightner Fayetteville State University


Graphical method par inc7 l.jpg
Graphical Method: PAR, INC

C2

x2

C1

x1

Dr. C. Lightner Fayetteville State University


Graphical method par inc8 l.jpg
Graphical Method: PAR, INC

  • Constraint 3 (C3):

    1 x1 + 2/3 x2 ≤ 708

    In order to graph a line we need two points that fall on the line. Arbitrarily, let x1 =0. Then x2 =1062. Therefore one point on this line is (0, 1062).

    Arbitrarily, let x2 =0. Then x1 =708. Therefore a 2nd point on this line is (708, 0). Connect the points (0, 1062) and (708,0) to draw this line.

  • Determine the Feasible Side of the Line:

    Using our test point point (0,0), we find that x1 =0 and x2 =0 satisfies the above constraint [1 * (0) + 2/3 (0) is less than 708]. Thus all points on the side containing the point (0,0) will satisfy this constraint. We put a red arrow to indicate the feasible side of the line.

Dr. C. Lightner Fayetteville State University


Graphical method par inc9 l.jpg
Graphical Method: PAR, INC

C3

x2

C1

C2

x1

Dr. C. Lightner Fayetteville State University


Graphical method par inc10 l.jpg
Graphical Method: PAR, INC

  • Constraint 4 (C4):

    1/10 x1+ 1/4 x2 ≤ 135

    Arbitrarily, let x1 =0. Then x2 =540. Therefore one point on this line is (0, 540).

    Arbitrarily, let x2 =0. Then x1 =1350. Therefore a 2nd point on this line is (1350, 0). Connect the points (0, 540) and (1350,0) to draw this line.

  • Determine the Feasible Side of the Line:

    Using our test point (0,0), we find that x1 =0 and x2 =0 satisfies the above constraint [1 * (0) + 2/3 (0) is less than 708]. Thus all points on the side containing the point (0,0) will satisfy this constraint. We put a red arrow to indicate the feasible side of the line.

Dr. C. Lightner Fayetteville State University


Graphical method par inc11 l.jpg
Graphical Method: PAR, INC

C3

x2

C1

C4

C2

x1

Dr. C. Lightner Fayetteville State University


Graphical method par inc12 l.jpg
Graphical Method: PAR, INC

  • Nonnegativity Constraints

    These constraints simply restrict us to the 1st quadrant of our coordinates (i.e. only 0 or positive values of x1 and x2 are considered feasible on our graph when we highlight our final feasible region).

Dr. C. Lightner Fayetteville State University


Graphical method par inc13 l.jpg
Graphical Method: PAR, INC

C3

x2

C1

C4

C2

x1

Dr. C. Lightner Fayetteville State University


Graphical method par inc14 l.jpg
Graphical Method: PAR, INC

  • After graphing each of the constraints and their feasible sides individually, we must determine all points on the coordinates which satisfy all constraints. These points make up the feasible region.

Dr. C. Lightner Fayetteville State University


Par inc graphical method feasible region l.jpg
PAR, INC GRAPHICAL METHODFEASIBLE REGION

C3

C1

x2

C4

x1

Dr. C. Lightner Fayetteville State University


Feasible region l.jpg
FEASIBLE REGION

  • Once the feasible region is drawn, we must determine the point in this region that maximizes (or minimizes) the objective function.

Dr. C. Lightner Fayetteville State University


Extreme points and the optimal solution l.jpg
Extreme Points and the Optimal Solution

  • The corners or vertices of the feasible region are referred to as the extreme points.

  • Fundamental Theorem of Linear Programming

    An optimal solution to an LP problem can be found at an extreme point of the feasible region.

  • Optimal point occurs on the objective function line corresponding to the optimal objective function value

  • When looking for the optimal solution, you do not have to evaluate all feasible solution points.

  • You have to consider only the extreme points of the feasible region.

Dr. C. Lightner Fayetteville State University


Par inc graphical method feasible region and extreme points l.jpg
PAR, INC GRAPHICAL METHODFEASIBLE REGION AND EXTREME POINTS

x2

x1

Dr. C. Lightner Fayetteville State University


Finding the optimal point l.jpg
Finding the Optimal Point

How to find the optimal point

  • Randomly draw objective function line.

  • Push the line in the “direction of decrease” (if minimization problem) or the “direction of increase” (if maximization problem)

  • The last point that you encounter in the feasible region is the optimal point

Dr. C. Lightner Fayetteville State University


Drawing an objective function line l.jpg
Drawing an Objective Function Line

  • Randomly select a point in the feasible region.

  • Substitute the coordinates of this point into the objective function to obtain an objective function value.

  • Plot the line obtained by setting the original objective function equal to the objective function value obtained in 2.

    PAR, INC Example

    Step 1: The point (200,0) is in the feasible region.

    Step 2: PAR INC OBJECTIVE FUNCTION 10 x1 + 9 x2 . (200,0) gives 10 (200) + 9 (0)= 2000.

    Step 3: Plot the line 10 x1 + 9 x2 =2000.

    Connect the points (0, 222.22) and (200, 0)

Dr. C. Lightner Fayetteville State University


Par inc graphical method feasible region and extreme points21 l.jpg
PAR, INC GRAPHICAL METHODFEASIBLE REGION AND EXTREME POINTS

x2

Obj. Func. line

x1

Dr. C. Lightner Fayetteville State University


Finding the direction of increase for maximization problems l.jpg
FINDING THE DIRECTION OF INCREASE (For Maximization problems)

  • Maximization problem: Finding the direction of increase

  • Let v1= the coefficient of x1 in the objective function.

  • Let v2= the coefficient of x2 in the objective function.

  • Plot the point (v1, v2) on the graph.

  • Draw an arrow from the origin (the point x1=0, x2=0) to the point (v1,v2). This is the direction of increase. Push the objective function in this direction until you encounter the last point in the feasible region. This point is optimal.

Dr. C. Lightner Fayetteville State University


Finding the direction of decrease for minimization problems l.jpg
FINDING THE DIRECTION OF DECREASE (For Minimization problems)

  • Minimization problem: Finding the direction of decrease

  • Let v1= - (the coefficient of x1 in the objective function).

  • Let v2= - (the coefficient of x2 in the objective function).

  • Plot the point (v1, v2) on the graph.

  • Draw an arrow from the origin (the point x1=0, x2=0) to the point (v1,v2). This is the direction of decrease. Push the objective function in this direction until you encounter the last point in the feasible region. This point is optimal.

Dr. C. Lightner Fayetteville State University


Par inc graphical method l.jpg
PAR INC GRAPHICAL METHOD

  • PAR INC objective function is

    Maximize 10 x1 + 9 x2

    Thus v1=10 and v2=9. I can draw an arrow from the origin in the direction of the point (10,9). This is the direction of increase.

Dr. C. Lightner Fayetteville State University


Par inc graphical method feasible region and extreme points25 l.jpg
PAR, INC GRAPHICAL METHODFEASIBLE REGION AND EXTREME POINTS

x2

Direction of Increase

This is the optimal point.

Obj. Func. line

x1

Dr. C. Lightner Fayetteville State University


Par inc graphical method feasible region and extreme points26 l.jpg
PAR, INC GRAPHICAL METHODFEASIBLE REGION AND EXTREME POINTS

x2

Slide 15 shows that the optimal point is

formed by the intersection of Constraint 1

and Constraint 3.

x1

Dr. C. Lightner Fayetteville State University


Par inc graphical solution l.jpg
PAR INC GRAPHICAL SOLUTION

Constraint 1: 7/10 x1 + 1 x2= 630

Constraint 3: 1 x1 + 2/3 x2 = 708

Find the point where these two lines intersect.

Solve the first equation for x2:

x2= 630-7/10 x1

Substitute the above equation for x2 in the 2nd equation.

1 x1 + 2/3(630-7/10 x1)=708

Solving the above equation for x1 gives, x1 = 540. Thus

x2= 630-7/10 (540)= 252.

The optimal point denoted x1*=540, x2*=252.

Dr. C. Lightner Fayetteville State University


Par inc graphical solution28 l.jpg
PAR INC GRAPHICAL SOLUTION

  • If we substitute the optimal point x1*=540, x2*=252 into the objective function, 10 (540)+ 9 (252)= 7668.

  • Thus PAR INC should produce 540 Standard bags and 252 Deluxe bags to receive a maximum profit of $7668.

Dr. C. Lightner Fayetteville State University


Discussion about the graphical method l.jpg
Discussion about the Graphical Method

  • Refer to Additional Graphical Method Problems link in LP Section 2 folder and/ or your textbook for more practice solving problems via the graphical method.

  • You will have one homework (containing 2 problems) dedicated to this approach. YOU WILL NOT HAVE TO SOLVE A PROBLEM USING THIS TECHNIQUE ON AN EXAM.

  • This approach to solving Linear Programming models allows us to visualize the process that computer software use to soft LP models.

  • Computer software use the knowledge that the optimal point is an extreme point of the feasible region (There are characteristics of extreme points that allow the computer to recognize them). The software will “intelligently” search these extreme points to determine the optimal solution to an LP model.

Dr. C. Lightner Fayetteville State University


Computer solutions l.jpg
Computer Solutions

  • Computer programs designed to solve LP problems are now widely available.

  • Most large LP problems can be solved with just a few minutes of computer time.

  • Small LP problems usually require only a few seconds.

  • We will use LINDO to solve our LP problems.

Dr. C. Lightner Fayetteville State University


Using lindo to solve l.jpg
Using LINDO to Solve

  • Look in the LP Section 2 folder and click on the link Downloading Free LINDO Software and follow the instructions.

  • The Par Inc file located in this folder is a MS Word file which explains how to enter (and solve) a program in LINDO.

  • Enter the other examples presented in this chapter into LINDO.

Dr. C. Lightner Fayetteville State University


Interpretation of computer output l.jpg
Interpretation of Computer Output

We will discuss the following output:

  • objective function value

  • values of the decision variables

  • reduced costs

  • slack/surplus

Dr. C. Lightner Fayetteville State University


Reduced cost l.jpg
Reduced Cost

  • The reduced cost for a decision variable whose value is 0 in the optimal solution is the amount the variable's objective function coefficient would have to improve (increase for maximization problems, decrease for minimization problems) before this variable could assume a positive value.

  • The reduced cost for a decision variable with a positive value is 0.

  • Example

    Consider the following objective function:

    Min 2 x1 + 5 x2 + 4 x3

    Suppose the optimal value of x1 is zero, with a reduced cost of 1.2. Since this is a

    minimization problem, this tells us that the current coefficient of x1 , which is 2,

    must be decreased by 1.2 in order for the optimal value of x1 to be nonzero. Thus

    if the objective function coefficient of x1 was 0.8 (or less), resolving the LP would

    yield a nonzero value of x1.

Dr. C. Lightner Fayetteville State University


Slack surlus l.jpg
SLACK/SURLUS

  • The slack for “less than or equal to” constraints is the difference between the right hand side of an equation and the value of the left hand side after substituting the optimal values of the decision variables.

  • The slack represents the amount of unused units of the right hand side resources.

  • The surplus for “greater than or equal to” constraints is the difference between the right hand side of an equation and the value of the left hand side after substituting the optimal values of the decision variables.

  • The surplus represents the number of units in which the optimal solution causes the constraint to exceed the right hand side lower limit.

Dr. C. Lightner Fayetteville State University


Par inc lindo solution l.jpg
Par INC LINDO Solution

LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

1) 7667.942

VARIABLE VALUE REDUCED COST

X1 539.9842530.000000

X2 252.0110320.000000

ROW SLACK OR DUAL PRICES

SURPLUS

2) 0.000000 4.374566

3) 120.007088 0.000000

4) 0.000000 6.937804

5) 17.998819 0.000000

6) 539.984253 0.000000

7) 252.011032 0.000000

NO. ITERATIONS= 2

Constraint 1

Constraint 2

Constraint 3

Constraint 4

X1>=0 Constraint

X2>=0 Constraint

Dr. C. Lightner Fayetteville State University


Par inc lindo solution36 l.jpg
Par INC LINDO Solution

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 10.000000 3.499325 3.700000

X2 9.000000 5.285714 2.333000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE

2 630.000000 52.358864 134.400009

3 600.000000 INFINITY 120.007088

4 708.000000 192.000000 127.986000

5 135.000000 INFINITY 17.998819

6 0.000000 539.984253 INFINITY

7 0.000000 252.011032 INFINITY

Dr. C. Lightner Fayetteville State University


Par inc l.jpg
PAR INC

  • Recall that we rounded values (instead of entering fractions) when entering our model. Therefore, our LINDO output will be slightly different from the actual solution.

  • From the spreadsheet we see that the maximum that PAR can achieve while meeting the constraints is 7667.942 or 7668.

  • The optimal solution is to produce X1 =539.984253 or 540 standard bags, X2=252.011032 or 252 deluxe bags.

  • The reduced costs for both decision variables is zero since their optimal values are nonzero.

  • Row 1 represents the objective function.

  • Row 2 represents constraint 1, row 3 represents constraint 2, row 4 represents constraint 3, etc…

  • Refer to the order in which you entered the model into LINDO.

Dr. C. Lightner Fayetteville State University


Par inc slack surplus l.jpg
PAR INC (Slack/Surplus)

  • Constraint 1 is a “less than or equal to constraint” (0.7 x1+ x2 ≤630)

    Plugging the optimal values into the left hand side of constraint 1 gives

    0.7(540) + 1 (252)2 = 630

    Since the left hand side (with optimal values substituted) equals the left hand side, the slack is 0.

  • Constraint 2 is a “less than or equal to constraint” (0.5 x1+ 0.8333 x2 ≤600)

    Plugging the optimal values into the left hand side of constraint 2 gives

    0.5 (540) + 0.8333(252) = 480

    The difference between this value and 600 is 120. The spreadsheet lists 120 as the slack for this constraint.

  • Recall from LP Section 1that Constraint 2 represents the amount of sewing hours available for use. This slack indicates that the optimal solution leaves 120 sewing hours unused. Suggesting that less workers may be used to achieve the optima profit since so many hours will be wasted.

Dr. C. Lightner Fayetteville State University


Par inc slack surplus39 l.jpg
PAR INC (Slack/Surplus)

  • The output also reveals that 18 hours of Inspection and packing will also go unused.

  • The second output sheet gives information about sensitivity analysis. We will discuss this topic in the next section.

Dr. C. Lightner Fayetteville State University


Floataway tours lindo solution l.jpg
Floataway Tours LINDO Solution

OBJECTIVE FUNCTION VALUE

1) 5040.000

VARIABLE VALUE REDUCED COST

X1 28.000000 0.000000

X2 0.000000 2.000000

X3 0.000000 12.000000

X4 28.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.012000

3) 6.000000 0.000000

4) 0.000000 -2.000000

5) 52.000000 0.000000

6) 28.000000 0.000000

7) 0.000000 0.000000

8) 0.000000 0.000000

9) 28.000000 0.000000

Dr. C. Lightner Fayetteville State University


Floataway tours lindo solution41 l.jpg
Floataway Tours LINDO Solution

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 70.000000 44.999996 1.875001

X2 80.000000 2.000001 INFINITY

X3 50.000000 12.000001 INFINITY

X4 110.000000 INFINITY 16.363636

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE

2 420000.000000 INFINITY 45000.000000

3 50.000000 6.000000 INFINITY

4 0.000000 70.000000 30.000000

5 200.000000 52.000000 INFINITY

6 0.000000 28.000000 INFINITY

7 0.000000 0.000000 INFINITY

8 0.000000 0.000000 INFINITY

9 0.000000 28.000000 INFINITY

Dr. C. Lightner Fayetteville State University


Floataway tours lindo solution discussion l.jpg
Floataway Tours LINDO Solution Discussion

  • The maximum daily profit that they can achieve (while meeting constraints) is $5040.

  • The optimal solution is x1=28 or purchase 28 Speedhawks and x2=28 or purchase 28 Classys.

  • The reduced costs for Speedhawks and Classys is 0 since their optimal values are nonzero.

  • The reduced cost for Silverbirds (x2) is 2. This means that the objective function coefficient for x2 (currently 80) must be improved by 2 in order for the optimal value of x2 to become nonzero (i.e. in order for it to become profitable to order Silverbirds). Since this is a maximization problem, improved means increased. Therefore if the daily expected profit for Silverbirds was 82 opposed to 80, it would be profitable to order Silverbirds.

  • Similarly if the objective function coefficient for Catmans (x3 ) was 62 (instead of 50) it would be profitable to order these type of boats.

Dr. C. Lightner Fayetteville State University


Floataway tours lindo solution discussion43 l.jpg
Floataway Tours LINDO Solution Discussion

  • The surplus for constraint 2 (the requirement that at least 50 boats be purchased) shows that they purchase 6 boats over the 50 minimum requirement.

  • The surplus for constraint 4 ( the requirement that they have a seating capacity of at least 200) shows that they can seat 52 passengers over the 200 minimum requirement.

Dr. C. Lightner Fayetteville State University


Police scheduling lindo solution l.jpg
Police Scheduling LINDO Solution

OBJECTIVE FUNCTION VALUE

1) 19.00000

VARIABLE VALUE REDUCED COST

X1 0.000000 0.000000

X2 6.000000 0.000000

X3 4.000000 0.000000

X4 3.000000 0.000000

X5 1.000000 0.000000

X6 5.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.000000

3) 0.000000 -1.000000

4) 0.000000 0.000000

5) 0.000000 -1.000000

6) 0.000000 0.000000

7) 0.000000 -1.000000

Dr. C. Lightner Fayetteville State University


Police scheduling lindo solution45 l.jpg
Police Scheduling LINDO Solution

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 1.000000 INFINITY 0.000000

X2 1.000000 0.000000 1.000000

X3 1.000000 0.000000 0.000000

X4 1.000000 0.000000 0.000000

X5 1.000000 0.000000 0.000000

X6 1.000000 0.000000 0.000000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE

2 5.000000 0.000000 3.000000

3 6.000000 INFINITY 0.000000

4 10.000000 0.000000 INFINITY

5 7.000000 INFINITY 0.000000

6 4.000000 0.000000 3.000000

7 6.000000 3.000000 0.000000

Dr. C. Lightner Fayetteville State University


Police scheduling lindo solution46 l.jpg
Police Scheduling LINDO Solution

  • The department needs 19 officers to meet the daily requirements.

  • The optimal solution is to hire 0 officers to work the shift from 8AM – 4PM (x1=0), 6 officers to work the shift from Noon – 8PM (x2=6), 4 officers to work the shift from 4PM – Midnight (x3=4), 3 officers to work the shift from 8PM – 4AM (x4=3), 1 officers to work the shift from Midnight – 8AM (x5=1), and 5 officers to work the shift from 4AM – Noon (x6=5).

  • The surplus for all constraints is 0. Thus each shift has exactly the number of required officers for each shift.

Dr. C. Lightner Fayetteville State University


The end l.jpg
THE END

See your textbook for more

examples and detailed explanations

of all topics discussed in these notes.

Dr. C. Lightner Fayetteville State University


ad