engranajes l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
ENGRANAJES PowerPoint Presentation
Download Presentation
ENGRANAJES

Loading in 2 Seconds...

play fullscreen
1 / 39

ENGRANAJES - PowerPoint PPT Presentation


  • 341 Views
  • Uploaded on

ENGRANAJES. RUEDAS RECTAS. ENGRANAJE RECTO. Valores Caracteristicos: Número de dientes, z Módulo, m en mm Paso=  m. NOMENCLATURA. DIMENSIONES:. Diámetro medio: D= m z Diámetro de cabeza: D= m (z+2) Diámetro de fondo: D= m (z-2,5). RUEDAS RECTAS. ENGRANAJE RECTO.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ENGRANAJES' - Jims


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
ruedas rectas
RUEDAS RECTAS

ENGRANAJE RECTO

  • Valores Caracteristicos:
  • Número de dientes, z
  • Módulo, m en mm
  • Paso=  m
nomenclatura
NOMENCLATURA

DIMENSIONES:

  • Diámetro medio: D= m z
  • Diámetro de cabeza: D= m (z+2)
  • Diámetro de fondo: D= m (z-2,5)
ruedas rectas4
RUEDAS RECTAS

ENGRANAJE RECTO

ruedas rectas6
RUEDAS RECTAS

FUERZAS GENERADAS

Fuerza Tangencial:

Ft = Mt / R

Fuerza Radial:

Fr = Ft Tg 

, ángulo de contacto.

Valor habitual, =20º

slide7

RUEDAS HELICOIDALES

  • Valores Caracteristicos:
  • Número de dientes, z
  • Módulo, m en mm
  • Paso=  m
  • a, ángulo de hélice.

Valores habituales de 15º

20º

DIMENSIONES:

  • Diámetro medio: D= ma z
  • Diámetro de cabeza: D= ma (z+2)
  • Diámetro de fondo: D= ma (z-2,5)

Módulo aparente:

ma = m / cos a

slide8

RUEDAS HELICOIDALES

FUERZAS GENERADAS

Fuerza Tangencial:

Ft = Mt / Ra

Fuerza Radial:

Fr = Ft Tg a

Tg a =Tg  / Cos a

Fuerza axial:

Fr = Ft Tg a

ruedas conicas
RUEDAS CONICAS
  • Valores Caracteristicos:
  • Número de dientes, z
  • Módulo, m medio en mm
  • Paso=  m
  • 1 - 2, ángulos de paso.

Ejes perpendiculares:

1 + 2 = 90º

DIMENSIONES:

  • Diámetro medio: D= m z
  • Diámetro de cabeza: D= m (z+2)
  • Diámetro de fondo: D= m (z-2,5)
ruedas conicas10
RUEDAS CONICAS

FUERZAS GENERADAS

Fuerza Tangencial:

Ft = Mt / Rmedio

Fuerza Radial:

Fr = Ft Tg  Cos 

Fuerza axial:

Fr = Ft Tg  Sen 

aplicaci n de los diferentes tipos de ruedas
Aplicación de los diferentes tipos de ruedas

En la figura se muestra una batidora industrial, en la que podemos ver los diferentes tipos de engranajes.

engranaje tornillo sin f n
Engranaje, tornillo sin fín

a.) de dientes cilíndricos b.) doble envolvente.

pasos diametrales preferidos
Pasos diametrales preferidos

Pasos diametrales preferidos para cuatro clases de dientes

pasos diametrales
Pasos diametrales

Pasos diametrales estándares comparados con el tamaño del diente. Se supone un tamaño real

addendum dedendum and clearance
Addendum, Dedendum and Clearance

Table 14.2 Formulas for addendum, dedendum, and clearance (pressure angle 20°, full-depth involute.)

Text Reference: Table 14.2, page 623

pitch and base circles
Pitch and Base Circles

Figure 14.8 Pitch and base circles for pinion and gear as well as line of action and pressure angle.

Text Reference: Figure 14.8, page 624

involute curve
Involute Curve

Figure 14.9 Construction of involute curve.

Text Reference: Figure 14.9, page 625

contact ratio
Contact Ratio

Figure 14.10 Illustration of parameters important in defining contact ratio.

Text Reference: Figure 14.10, page 629

line of action
Line of Action

Figure 14.11 Details of line of action, showing angles of approach and recess for both pinion and gear.

Text Reference: Figure 14.11, page 629

backlash
Backlash

Figure 14.12 Illustration of backlash in gears.

Text Reference: Figure 14.12, page 632

recommended minimum backlash
Recommended Minimum Backlash

Table 14.3 Recommended minimum backlash for coarse-pitch gears.

Text Reference: Table 14.3, page 633

externally meshing spur gears
Externally Meshing Spur Gears

Figure 14.13 Externally meshing spur gears.

Text Reference: Figure 14.13, page 635

internally meshing spur gears
Internally Meshing Spur Gears

Figure 14.14 Internally meshing spur gears.

Text Reference: Figure 14.14, page 635

simple gear train
Simple Gear Train

Figure 14.15 Simple gear train.

Text Reference: Figure 14.15, page 636

compound gear train
Compound Gear Train

Figure 14.16 Compound gear train.

Text Reference: Figure 14.16, page 636

example 14 7
Example 14.7

Figure 14.17 Gear train used in Example 14.7.

Text Reference: Figure 14.17, page 637

allowable bending stress vs brinell hardness
Allowable Bending Stress vs. Brinell Hardness

Figure 14.18 Effect of Brinell hardness on allowable bending stress for two grades of through-hardened steel [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.]

Text Reference: Figure 14.18, page 638

contact stress vs brinell hardness
Contact Stress vs. Brinell Hardness

Figure 14.19 Effect of Brinell Hardness on allowable contact stress for two grades of through-hardened steel. [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.]

Text Reference: Figure 14.19, page 639

forces on gear tooth
Forces on Gear Tooth

Figure 14.20 Forces acting on individual gear tooth.

Text Reference: Figure 14.20, page 640

bending stresses
Bending Stresses

Figure 14.21 Forces and length dimensions used in determining bending tooth stresses. (a) Tooth; (b) cantilevered beam.

Text Reference: Figure 14.20, page 641

lewis form factors
Lewis Form Factors

Table 14.4 Lewis form factors for various numbers of teeth (pressure angle 20°, full depth involute).

Text Reference: Table 14.4, page 642

spur gear geometry factors
Spur Gear Geometry Factors

Figure 14.22 Spur gear geometry factors for pressure angle of 20° and full-depth involute. [ANSI/AGMA Standard 1012-F90, Gear Nomenclature, Definition of Terms with Symbols, American Gear Manufacturing Association, 1990.]

Text Reference: Figure 14.21, page 643

application factor
Application Factor

Table 14.5 Application factor as a function of driving power source and driven machine.

Text Reference: Table 14.5, page 643

size factor
Size Factor

Table 14.6 Size factor as a function of diametral pitch or module.

Text Reference: Table 14.6, page 644

load distribution factor
Load Distribution Factor

Figure 14.23 Load distribution factor as function of face width and ratio of face width to pitch diameters. Commercial quality gears assumed. [From Mott (1992).]

Text Reference: Figure 14.23, page 645

dynamic factor
Dynamic Factor

Figure 14.24 Dynamic factor as function of pitch-line velocity and transmission accuracy level number.

Text Reference: Figure 14.24, page 645

helical gear
Helical Gear

Figure 14.25 Helical gear. (a) Front view; (b) side view.

Text Reference: Figure 14.25, page 651

pitches of helical gears
Pitches of Helical Gears

Figure 14.26 Pitches of helical gears. (a) Circular; (b) axial.

Text Reference: Figure 14.26, page 652

motor torque and speed
Motor Torque and Speed

Figure 14.28 Torque and speed of motor as function of current for industrial mixer used in case study.

Text Reference: Figure 14.28, page 655