Create Presentation
Download Presentation

Download Presentation
## Non-Standard Neutrino Interactions

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Non-Standard Neutrino Interactions**Enrique Fernández-Martínez MPI fürPhysik Munich Many thanks to F. Bonnet for discussions on this subject**Introduction: NSI**Generic new physics affecting n oscillations can be parameterized as 4-fermion Non-Standard Interactions: Production or detection of a nbassociated to a la So that n +nb→p+la p → m +nb Y. Grossman hep-ph/9507344**Directboundsonprod/detNSI**Preliminary bounds order ~10-2 C. Biggio, M. Blennow and EFM work in progress**Introduction: NSI**Non-Standard n scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions: so that na→nbin matterf = e, u, d**DirectboundsonmatterNSI**If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607**Source of NSI**Neutrino masses already imply physics beyond the SM… … extensions to accommodate neutrino masses can naturally lead to NSI**SSB**SSB The Type I Seesaw Model The SM is extended by: Iftheright-handed neutrino NRis heavy it can beintegratedout: Weinberg 1979 A. Broncano, M. B. Gavela and E. Jenkins hep-ph/0210192**Effective Lagrangian**Diagonal mass and canonical kinetic terms**Effective Lagrangian**Diagonal mass and canonical kinetic terms N is not unitary**Non-unitarity and NSI**The general matrix N can be parameterized as: where So that with And production/detectionNSI: Alsogave**Non-unitarity and NSImattereffects**Integrating out the W and Z, 4-fermion operators for matter NSI are obtained from non-unitary mixing matrix They are related to the production and detection NSI**ni**Z W ni nj la g W la ni lb (NN†) from decays • W decays Info on (NN†)aa • Invisible Z • Universality tests Info on(NN†)ab • Rare leptons decays Afterintegratingout W and Z neutrino NSI induced**Experimentally**(NN†)fromdecays E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 S. Antusch, J. Baumann and EFM 0807.1003**Non-Unitarity at a NF**Golden channel at NF is sensitive to ete nm disappearance channel linearly sensitive to etm through matter effects Near t detectors can improve the bounds on eteand etm Combination of near and far detectors sensitive to the new CP phases S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 SeealsoEFM, B. Gavela, J. López Pavón and O. Yasudahep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,….**Type I seesaw**Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic, … NRfermionicsinglet Type III seesaw Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al., Dorsner, Fileviez-Perez SRfermionictriplet Othermodelsfornmasses Type II seesaw Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle, … Dscalartriplet**non-unitarymixing in CC**• FCNC forn Type I: • non-unitarymixing in CC • FCNC forn • FCNC forchargedleptons Type III: • LFV 4-fermions • interactions Type II: Different d=6 ops A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 TypesII and III induce flavourviolation in thechargedlepton sector Strongerconstraintsthan in Type I**Type III:**Type II: BoundsforType II and III Seesaw A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 and M. Malinsky, T. Ohlsson and H. Zhang 0811.3346 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058**Type II Seesaw at a NF**Some hope for that leads to wrong sign m at Nufact near detector M. Malinsky, T. Ohlsson and H. Zhang 0811.3346**Lowscaleseesaws**But so !!!**Lowscaleseesaws**The d=5 and d=6 operators are independent Approximate U(1)L symmetry can keep d=5 (neutrino mass) small and allow for observable d=6 effects Seee.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 Inverse (Type I) seesaw Type II seesaw L= 1 -1 1 m<< M Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle,… Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu, Santamaría, Vidal, Mendez, González-García, Branco, Grimus, Lavoura, Kersten, Smirnov,….**NSIfromtheMSSM**Leads to t at near detectors in a Nufact Related to bounds O(10-5) T. Ota and J. Sato hep-ph/0502124**LargeNSI?**Can large NSI be realized with some other SM extension? Can the mild model-independent bounds be saturated? What does it take to avoid the strong constraints? S. Antusch, J. Baumann and EFM 0807.1003 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**Gauge invariance**However is related to by gauge invariance and very strong bounds exist • → e g • m→ e in nuclei • t decays S. Bergmann et al. hep-ph/0004049 Z. Berezhiani and A. Rossihep-ph/0111147**LargeNSI?**• We search for gauge invariant SM extensions satisfying: • Matter NSI are generated at tree level • 4-charged fermionops not generated at the same level • No cancellations between diagrams with different messenger particles to avoid constraints • The Higgs Mechanism is responsible for EWSB S. Antusch, J. Baumann and EFM 0807.1003 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**LargeNSI?**At d=6 only one direct possibility: charged scalar singlet Present in Zee model or R-parity violating SUSY M. Bilenky and A. Santamariahep-ph/9310302**LargeNSI?**Since lab= -lbaonly emm, emtand ett≠0 Very constrained: • m → e g • m decays • decays • CKM unitarity F. Cuypers and S. Davidsonhep-ph/9310302 S. Antusch, J. Baumann and EFM 0807.1003**LargeNSI?**At d=8 more freedom Can add 2 H to break the symmetry between n and l with the vev There are 3 topologies to induce effective d=8 ops with HHLLfflegs: -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147; S. Davidson et al hep-ph/0302093**LargeNSI?**We found three classes satisfying the requirements:**LargeNSI?**We found three classes satisfying the requirements: Just contributes to the scalar propagator after EWSB Same as the d=6 realization with the scalar singlet 1 v2/2**LargeNSI?**We found three classes satisfying the requirements: The Higgs coupled to the NR selects n after EWSB 2 -v2/2 Z. Berezhiani and A. Rossihep-ph/0111147 S. Davidson et al hep-ph/0302093**LargeNSI?**But can be related to non-unitarity and constrained 2**LargeNSI?**For the matter NSI Where is the largest eigenvalue of And additional source, detector and matter NSI are generated through non-unitarityby the d=6 op**LargeNSI?**We found three classes satisfying the requirements: Mixed case, Higgs selects one n and scalar singlet S the other 3**LargeNSI?**Can be related to non-unitarity and the d=6antisymmetric op 3**LargeNSI?**At d=8 we found no new ways of selecting n The d=6 constraints on non-unitarity and the scalar singlet apply also to the d=8 realizations What if we allow for cancellations among diagrams? B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**LargeNSI?**B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**LargeNSI?**boldmeans induces 4-charged fermion at d=6, haveto cancel it!! tickmeansselectsn at d=8 without 4-charged fermion B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**LargeNSI?**There is always a 4 charged fermion op that needs canceling Toy model Cancellingthe4-charged fermionops. B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**NSI in loops**Even if we arrange to have We can close the Higgs loop, the triplet terms vanishes and NSIs and 4 charged fermion ops induced with equal strength C. Biggio, M. Blennow and EFM 0902.0607**NSI in loops**• The loop contribution is a quadratic divergence • The coefficient k depends on the full theory completion • If no new physics below NSI scale L=M • Extra fine-tuning required at loop level to have k=0 or loop contribution dominates when1/16p2> v2/M2 C. Biggio, M. Blennow and EFM 0902.0607**Conclusions**• Models leading “naturally” to NSI imply: • O(10-3) bounds on the NSI • Relationsbetweenmatter and production/detectionNSI • ProbingO(10-3) NSI at future facilities very challenging but not impossible, near detectors excellent probes • Saturating the mild model-independent bounds on matter NSI and decoupling them fromproduction/detectionrequiresstrong fine tuning**LargeNSI?**General basis for d=8 ops. with two fermions and two H 2 left + 2 right 4 left Z. Berezhiani and A. Rossihep-ph/0111147 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451**LargeNSI?**To cancel the 4-charged fermion ops: but and NR scalarsinglet NR NR after a Fierztransformation**DirectboundsonmatterNSI**If matter NSI are uncorrelated to production and detection direct bounds are mainly from n scattering off e and nuclei 0.33 0.33 Rather weak bounds… …can they be saturated avoiding additional constraints? S. Davidson, C. Peña garay, N. Rius and A. Santamariahep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607**NSI in loops**This loop has to be added to: Used to set loop bounds on eemthrough the log divergence However the log cancels when adding the diagrams… + C. Biggio, M. Blennow and EFM 0902.0607**Measuring unitarity deviations**In Pmt there is no or suppression The CP phasedmt can be measured EFM, B. Gavela, J. López Pavón and O. Yasuda hep-ph/0703098 See also S. Goswami and T. Ota 0802.1434**Measuringunitaritydeviations**The CP asymmetry in the em channel cannot be far from the SM But it can be very different for the etor mtchannels Consistency check! G. Altarelli and D. Meloni 0809.1041