1 / 15

Purpose and Diversity of Flavonoids in Plants

Purpose and Diversity of Flavonoids in Plants. Jen Taylor BioInformatics 1 May 2003. Phenolics. Group of secondary plant products or compounds Composed of a hydroxyl group attached to an aromatic ring A broad range of compounds - found in all components of plants: leaves, flowers, fruit etc

Download Presentation

Purpose and Diversity of Flavonoids in Plants

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Purpose and Diversityof Flavonoids in Plants Jen Taylor BioInformatics 1 May 2003

  2. Phenolics • Group of secondary plant products or compounds • Composed of a hydroxyl group attached to an aromatic ring • A broad range of compounds - found in all components of plants: leaves, flowers, fruit etc • Function of most compounds is unknown • Comprised of many groups: Flavonoids, Tannins, Lignin etc. All very chemically diverse!

  3. Flavonoids • Water soluble pigment • Most widely studied group of phenolics: over 3000 described • Seem to have major health benefits for humans - red wine and cholesterol • Variety of important functions in plants

  4. Flavonoid Functions • Combine to create flower pigmentation: serve as signals for pollinators • Block UV radiation destructive to nucleic acids • Allow selective admittance of Blue-Green and Red light for Photosynthesis

  5. Flavonoid Functions Con’t. • Reduces the palatability of plants or causes herbivores to avoid the plants altogether • Affects interaction of plants with other organisms: Inhibit or encourages bacteria and mychorizzae associations • Have anti-oxidative effects, antimicrobial anti-carcinogenic and cardio-protective • Various classes of Flavoniods: Anthocyanins, Flavonols, Flavones, IsoFlavones

  6. Anthocyanins • Range in color from Red through Purple and Blue • Main constituents of plant flower color • Important in attracting pollinators and dispersers • Mutualistic relationships!

  7. Flavonols and Flavones • Mostly colorless pigments in the leaves of plants • Control light admittance to leaves: photosynthesis and UV protection • Cause of leaf color change in the Fall: As Chlorophyll breaks down - large quantities of flavonols are converted to anthocyanins!

  8. IsoFlavones • Found mostly in Legumes (Fabaceae) • Allelopathy – herbivory defense, pathogen defense!

  9. Flavonoid Biosynthesis Constructed from the products of two different pathways And catalyzed by CHALCONE SYNTHASE

  10. Chalcone Synthase • Catalyzer of all Flavonoids • Collected mRNA sequences of all GCG plants • Lilliaceae, Fabaceae, Pinaceae, Cannabaceae, Rosaceae, Pteridophytes • Many programs were used to see the relation of Chalcone Synthase genes between plant species

  11. mRNA Consensus alliuma.seg acgatacatg cacgtaaacg aacaaatact gaaatccaat ccgaacatga alliumb.seg caggaaacgc tacatgcacc tgtccgaaga catcctaaac gaaaacccaa arachis.seg gagatatatg tacttaacgg aggagatctt gaaagaaaac ccaaacatgt cannabis.seg acgttacatg catttaactg aggagattct caaagaaaat ccaaatcttt equisetum.seg GAAGTCCGGG ATTAAGAAGC GGTACATGCA CTTGAACAGT GAAATTCTGA gerbera.seg GGGACTCTCA AAATCCAAGA TCACACACCT CATCTTTTGC ACCACCGCTG glycine.seg gagatatatg tacctaaacg aagagatctt gaaagagaat ccaaacatgt humulus.seg GCGTTACATG CACTTAACTG AGGAGATCCT TAAGGAGAAT CCAAATCTTT hypericum.seg acgttacatg tacctgaacg aggagattct gaaggagaac cccaatatgt malus.seg acgttatatg tacttgactg aagaaatttt aaaagagaac ccaagtgtgt msatvia.seg CTGAAGTCAC TGCAGTTACA TTTCGCGGCC CTAGTGATAC TCACTTGGAC pinus1.seg atccgcaata aaaaagagat atatgtactt gacagaggag atcctccagg pinus2.seg atccgcaata aaaaagagat atatgtactt gacagaggag atccttcagg psilotum.seg CATGCATCTT ACTCCAGAAA TCCTGGAAGC TAATCCTGCC ATGTGCGCCT rubus11.seg gcgttacatg tacttaactg aagaaatcct gaaggagaat cctagtatgt rubus5.seg gcgttacatg tacttgacgg aagaaatcct gaaggagaat cctagtatgt rubus6.seg gcgttacatg tacttgacgg aagaaatcct gaaggagaat cctagtatgt senna2.seg gcgatacatg catttaaccg aagatcttct aaaggagaat cctaatatgt senna3.seg aagatacatg catttgacag aagagatcct aaaggagaac cctaacatgt senns1.seg gagatacatg cacttgacag aggagatcct caaggagaac cctaacatgt sorghum.seg gatgattagg aagcgttaca tgcatttgac tgaggacatc ctagaggaga Consensus --G--A-ATG -A----A--- A--A--T--T -AA-GA-AA- -C-A------

  12. Protein Consensus pileup_108.msf{translate_105} QDIVVVEVPK LGKSAAQSAI KEWGRPKAHI THLIFCTTSG VDMPGADYQL pileup_108.msf{translate_106} QDIVVVEIPK LGKSAAQAAI KEWGRPKSHI THLIFCTTSG GDMPGADYQL pileup_108.msf{translate_96} QDMVVVEVPR LGKEAAAKAI KEWGQPKSKI THVIFCTTSG VDMPGADYQL pileup_108.msf{translate_97} QDMVVVEVPR LGKEAAAKAI KEWGQPKSKI THVIFCTTSG VDMPGADYQL pileup_108.msf{translate_89} QDMVVVEVPK LGKEAATKAI KEWGQPKSKI THLIVCTTSG VDMPGADYQL pileup_108.msf{translate_89-2} QDMVVVEVPK LGKEAATKAI KEWGQPKSKI THLIVCTTSG VDMPGADYQL pileup_108.msf{translate_87} QDIVVLEVPK LGKEAATKAI KEWGQPKSKI THLIFCTTSG VDMPGADYQL pileup_108.msf{translate_88} QDIVVLEVPK LGKEAATKAI KEWGQPKSKI THLIFCTTSG VDMPGADYQL pileup_108.msf{translate_101} QDMVVVEVPK LGKEAAVKAI KEWGQPKSKI THLIFCTTSG VDMPGADYQL pileup_108.msf{translate_104} QDMVVVEVPR LGKEAATKAI KEWGQPKSKI THLIFCTTSG VDMPGADYQL pileup_108.msf{translate_103} QDMVVVEVPK LGKEAATKAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_100} QDMVVVEVPK LGKEAATKAI KEWGQPKSEI THVVFCTTSG VDMPGADYQL pileup_108.msf{translate_93} QDMVVVEIPK LGKEAATKAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_94} QDMVVVEIPK LGKEAATKAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_90} QDMVVVEIPK LGKEAATKAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_99} QDMVVVEVPK LGKEAAIKAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_98} QDIVVVEVPK LGKEAAVRAI KEWGQPKSKI THLVFCTTSG VDMPGADYQL pileup_108.msf{translate_102} QDIAVVEVPK LGKEASLKAI KEWGQPKSKI THLVFCTTSG VDMPGADWAL pileup_108.msf{translate_95} QDIVVIEVPK LGKEAAVKAI KEWGQPRTKI THLVFCTTSG VDMPGADWTL Consensus QD-VVVEVPK LGKEAA-KAI KEWGQPKSKI THLIFCTTSG VDMPGADYQL

  13. Phylogenetic Tree Fabaceae = Blue Rosaceae = Red Cannabaceae = Orange Pteridophytes = Purple Pinaceae = Green Lilliaceae = Yellow

  14. Localization Potential by Family • Fabaceae (one branch), Cannabaceae, Lilliaceae, Pinaceae = 45% cytoplasm • Rosaceae = 60% cytoplasm • Fabaceae (other branch) and Pteridophytes = 34% mitochondrial matrix • Relation to Phylogenetic Tree?

  15. Conclusion • Flavonoids serve a variety of important functions in all plants • Chalcone synthase exists in a variety of plant species • Gene sequence and protein location may be indicators of flavonoid function in plants!

More Related