110 likes | 141 Views
u00a1Bienvenidos! Hoy vamos a hablar sobre los nu00fameros reales. u00bfAlguna vez has contado tus dedos, tus juguetes o las manzanas en la cocina? u00a1Entonces ya sabes algo sobre los nu00fameros reales!
E N D
Aprendizajes esperados: • Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales y en el ámbito cotidiano. • Percibir la matemática como una disciplina en evolución y desarrollo permanente. • Aplicar la operatoria básica en los números naturales y enteros.
Aplicar las operaciones básicas y propiedades de los números racionales. • Resolver problemas que involucren operaciones con números enteros, decimales y fracciones. • Reconocer regularidades numéricas (secuencias).
0 -3 -2 -1 1 2 3 Números Enteros (Z) Conjunto de la forma: Z = {…, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …}, infinito. Z = Z- U IN0 Se puede representar como: Z = Z- U {0} U Z+ Recta numérica: Z- Z+
0 -5 5 5 unidades 5 unidades Valor absoluto: El valor absoluto de un número representa la distancia del punto al origen (cero de la recta numérica). Por ejemplo, la distancia del 5 al origen es cinco unidades, igual que la distancia del -5 al origen. La notación es: |5| = 5 y |-5| = 5 Luego, |-20| = 20 |34| = 34 |-12| = 12…
Operaciones en Z Al realizar sumas, restas, multiplicaciones y divisiones en los enteros, debemos considerar algunas reglas con respecto a los signos: Si a y b son números enteros entonces, se cumple que: a) a + -b = a – b Ejemplo: 5 + - 9 = 5 – 9 = -4 b) a – (-b) = a + b Ejemplo: 12 – (-8) = 12 + 8 = 20
c) Al sumar enteros de igual signo, éste se mantiene. Ejemplo: 25 + 8 = +33 -5 + - 9 = -14 d) Al sumar enteros de distinto signo, se calcula la diferencia entre sus valores absolutos, conservando el signo del mayor. Ejemplo: -10 + 7 = -3 75 + -9 = +66
e) Si a y b son dos números enteros de igual signo (positivos o negativos), entonces: - El producto y el cuociente entre ellos es positivo. Ejemplo: -42 ∙ -8 = + 336 28 : 7 = + 4 f) Si a y b son dos números enteros de distinto signo, entonces: - El producto y el cuociente entre ellos es negativo. Ejemplo: 37 ∙ -5 = -185 125 : -5 = -25
Propiedades La suma de números enteros cumple con la propiedad Conmutativa y Asociativa. Ejemplo: (-3) + 2 = 2 + (-3) -1 = -1 La suma en los números enteros tiene “elemento neutro”: el cero. (-8)+ 0 = -8 Ejemplo:
Prioridad en las operaciones Tanto en los números naturales como en los enteros, hay operaciones que tienen prioridad sobre otras. Existe un orden para resolver ejercicios como: -5 + 15 : 3 - 3 = ? ¿Qué se resuelve primero? El orden para ejecutar las operaciones que involucran paréntesis y operaciones combinadas es: 1° Paréntesis 2° Potencias • 3° Multiplicación y/o división (de izquierda a derecha) 4° Adiciones y sustracciones
Resolver : -5 + 15 : 3 - 3 = -5 + 5 – 3 = 0 – 3 = – 3