1 / 11

introduction to nucleophlic reaction

all about nucleophilic sub reactions

Irfan77
Download Presentation

introduction to nucleophlic reaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Based on McMurry’s Organic Chemistry, 7th edition

  2. Alkyl Halides React with Nucleophiles and Bases • Alkyl halides are polarized at the carbon-halide bond, making the carbon electrophilic • Nucleophiles will replace the halide in C-X bonds of many alkyl halides(reaction as Lewis base) • Nucleophiles that are Brønsted bases produce elimination

  3. Why this Chapter? • Nucleophilic substitution, base induced elimination are among most widely occurring and versatile reaction types in organic chemistry • Reactions will be examined closely to see: • How they occur • What their characteristics are • How they can be used

  4. 11.1 The Discovery of Nucleophilic Substitution Reactions • In 1896, Walden showed that (-)-malic acid could be converted to (+)-malic acid by a series of chemical steps with achiral reagents • This established that optical rotation was directly related to chirality and that it changes with chemical alteration • Reaction of (-)-malic acid with PCl5 gives (+)-chlorosuccinic acid • Further reaction with wet silver oxide gives (+)-malic acid • The reaction series starting with (+) malic acid gives (-) acid

  5. Reactions of the Walden Inversion

  6. Significance of the Walden Inversion • The reactions alter the array at the chirality center • The reactions involve substitution at that center • Therefore, nucleophilic substitution can invert the configuration at a chirality center • The presence of carboxyl groups in malic acid led to some dispute as to the nature of the reactions in Walden’s cycle

  7. 11.2 The SN2 Reaction • Reaction is with inversion at reacting center • Follows second order reaction kinetics • Ingold nomenclature to describe characteristic step: • S=substitution • N (subscript) = nucleophilic • 2 = both nucleophile and substrate in characteristic step (bimolecular)

  8. The SN2 reaction (also known as bimolecular nucleophilic substitution) is a type of nucleophilic substitution, where a lone pair from a nucleophile attacks an electron deficient electrophilic center and bonds to it, expelling another group called a leaving group. • The reaction most often occurs at an aliphaticsp3 carbon center with an electronegative, stable leaving group attached to it - 'X' - frequently a halide atom.

  9. Kinetics of Nucleophilic Substitution • Rate (V) is change in concentration with time • Depends on concentration(s), temperature, inherent nature of reaction (barrier on energy surface) • Arate law describes relationship between the concentration of reactants and conversion to products • A rate constant (k) is the proportionality factor between concentration and rate Example: for S converting to P V = d[S]/dt = k [S]

  10. Reaction Kinetics • The study of rates of reactions is called kinetics • Rates decrease as concentrations decrease but the rate constant does not • Rate units: [concentration]/time such as L/(mol x s) • The rate law is a result of the mechanism • The order of a reaction is sum of the exponents of the concentrations in the rate law – the example is second order

More Related