0 likes | 12 Views
IMSD-TABLAS (Caracteru00edsticas de figuras elementales)
E N D
Ing. Gabriel Pujol Año de edición 2024 Tablas(Características de figuras elementales) Tablas útiles para la resolución de la ejercitación de Introducción a la Mecánica del Sólido Deformable (IMSD).
UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA DEPARTAMENTO DE ESTABILIDAD ESTABILIDAD I - 64.01 Profesor Titular: Ing. Máximo FIORAVANTI Jefe de Trabajos Prácticos: Ing. Pablo SZAINGURTEN 1 SECCIÓN BARICENTRO / ÁREA MOMENTOS DE INERCIA Y MOMENTOS CENTRIFUGOS h4 3 h4 12 h 2 xg Jx Jxg Y g h4 3 h4 12 h 2 h G X yg Jy Jyg g Y o X h4 4 h2 h F Jxy Jxyg 0 b h3 ⋅ 3 b h3 ⋅ 12 b 2 xg Jx Jxg Y g b3h ⋅ 12 b3h ⋅ 3 h 2 h G X g yg Jyg Jy Y b2h2 ⋅ 4 o X b h ⋅ F Jxy Jxyg 0 b b h3 ⋅ 12 b h3 ⋅ 36 b 3 xg Jx Jxg b3h ⋅ 12 b3h ⋅ 36 Y h 3 h g yg Jy Jyg G X g Y b2h2 ⋅ 24 b2 72 h2 o b h ⋅ 2 − ⋅ X F Jxy Jxyg b b h3 ⋅ 12 b h3 ⋅ 36 b 2 xg Jx Jxg 7 b3 ⋅ 48 b3h ⋅ 48 Y h ⋅ h 3 h g yg Jy Jyg G X g Y b2h2 ⋅ 12 b h ⋅ 2 o X F Jxy Jxyg 0 b 7 b ⋅ h3 ⋅ 48 b h3 ⋅ 48 b 2 xg Jx Jxg Y g 7 b3 ⋅ 48 b3h ⋅ 48 h ⋅ h 2 h G X yg Jy Jyg g Y o X b2h2 ⋅ 8 b b h ⋅ 2 F Jxy Jxyg 0 h3 12 a2 3b2 h3 36 a2 b2 b + + b + + a 2 4ab a + 4ab a + ⋅ ⋅ xg Jx Jxg b Y g + + h 3 a 2b b h 48 h 48 7a3 7a2b a b2 ⋅ b3 a3 a2b a b2 ⋅ b3 h ⋅ ⋅ + + + ⋅ + + + yg Jy Jyg G X g a Y o X h2 12 a h 2 a2 ⋅ + ⋅ + F ( a b ) Jxy 2ab Jxyg 0
UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA DEPARTAMENTO DE ESTABILIDAD ESTABILIDAD I - 64.01 Profesor Titular: Ing. Máximo FIORAVANTI Jefe de Trabajos Prácticos: Ing. Pablo SZAINGURTEN 2 SECCIÓN BARICENTRO / ÁREA MOMENTOS DE INERCIA Y MOMENTOS CENTRIFUGOS r4 ⋅ r4 ⋅ ⋅ ⋅ 207 3 144 45 3 r xg Jx Jxg 144 Y g r4 ⋅ r4 ⋅ ⋅ ⋅ r ⋅ 3 2 261 3 45 3 G X yg Jy Jyg g 144 144 Y r o X 9⋅r4 4 3 3 ⋅ 2 r2 Jxy Jxyg 0 ⋅ F πr4 ⋅ 4 πD4 ⋅ 64 πr4 ⋅ 4 πD4 ⋅ 64 5 5 r xg Jx Jxg Y g πr4 ⋅ 4 πD4 ⋅ 64 πr4 ⋅ 4 πD4 ⋅ 64 5 5 r yg Jy Jyg G X g Y r o X πD2 ⋅ 4 πD4 ⋅ 16 πr4 ⋅ πr2 ⋅ Jxyg 0 F Jxy πr4 ⋅ 8 πD4 ⋅ 128 r4 π ⋅ 8 9π − r xg Jx Jxg 8 πr4 ⋅ 8 πD4 ⋅ 128 πr4 ⋅ 8 πD4 ⋅ 128 5 5 Y 4r 3π g Jy yg Jyg r Y G X g o X r4 3 πr2 ⋅ 2 2 πD ⋅ 8 2 Jxy F Jxyg 0 πr4 ⋅ 16 πD4 ⋅ 256 π 16 4r 3π 4 9π r4 ⋅ − xg Jx Jxg πr4 ⋅ 16 πD4 ⋅ 256 Y π 16 4r 3π 4 9π r4 g r ⋅ − yg Jy Jyg G X Y g o X πr2 ⋅ 4 2 r4 8 πD ⋅ 16 1 8 4 9π r4 ⋅ − F Jxy Jxyg r seno α ( ) ⋅ α ( ) ( ) r4 4 r4 4 seno 2α 2 seno 2α 2 2 3 ⋅ ⋅ α − ⋅ α − xg Jx Jxg α Y Y 2α ( ) α ( ) ( ) g r4 4 seno 2α 2 r4 α ⋅ seno 2α 8 4 seno ⋅ α + + − o yg 0 Jy Jyg G X X g 4 9 r α r2 ⋅ F Jxy 0 Jxyg 0 π 4 π 4 5R4 R2r2 r4 R4 r4 ⋅ − ⋅ − ⋅ − xg R Jx 4 Jxg Y g π 4 π 4 5R4 R2r2 r4 R4 r4 ⋅ − ⋅ − ⋅ − yg R Jy 4 Jyg G X g r Y R o X π R2 ⋅ r2 Jxy πR2 R2 r2 − ⋅ ⋅ − F Jxyg 0