1 / 5

Math Line Questions by Experienced IB Maths Tutors

Business Name: IB Elite Tutor<br>Address: R, 38, F Block, Pocket X, Okhla Phase II, Okhla, New Delhi, Delhi 110020<br>Contact: ibelitetutor@gmail.com <br><br>Description:<br>IB Elite Tutor specializes in providing personalized tutoring services for students enrolled in the International Baccalaureate (IB) program.

Faisal77
Download Presentation

Math Line Questions by Experienced IB Maths Tutors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1.[Maximummark:8][withoutGDC] ConsiderthepointsA(3,9),B(6,13). FindthegradientofthelineAB.[2] WritedownthegradientofalineperpendiculartoAB.[1] LetMbethemidpointofthelinesegmentAB.FindthecoordinatesofM.[1] FindthedistancebetweenAandB(i.e.,thelengthAB).[2] FindthecoordinatesofthepointCifBisthemidpointofthelinesegmentAC.[2] 2.[Maximummark:8][withoutGDC] ConsiderthepointsA(4,6),B(b,2),andC(8,−4)whereb∈R.Findthevaluesofbineachofthe followingcases: (a)IfthegradientofthelineABis3.[2] 2 IfthemidpointofthelinesegmentABisM(6,4).[2] IfBisthemidpointofthelinesegmentAC.[1] IfthedistancebetweenAandBis6.[3] 3.[Maximummark:9][withoutGDC] ConsiderthelineLgivenby3x+4=y. (a)Writedown thegradientoftheline[1] they-intercept[1] thex-intercept[1] Drawthelineonthediagrambelow.[3] CheckifthepointsA(5,19)andB(6,20)lieontheline.[3] 4.[Maximummark:7][withoutGDC] FindtheequationofthelinepassingthroughA(2,5)andB(6,8). inthegradient-pointformy−y1=m(x−x1).[3] inthegradient-interceptformy=mx+c.[2] intheformax+by=d,wherea, b,anddareintegers.[2]

  2. 5.[Maximummark:6][withoutGDC] Thediagrambelowshowsthelinewithequation4x+3y=24.ThepointsAandBaretheyandx- interceptsrespectively.MisthemidpointofAB. Findthecoordinatesof thepointA;[2] thepointB;[2] thepointM.[2] 6.[Maximummark:5][withoutGDC] FindtheequationofthelinepassingthroughthepointsA(3,−4)andB(3,9).[2] FindtheequationofthelinepassingthroughthepointsC(5,7)andD(−2,7).[2] FindthepointofintersectionPbetweenthelinesL1andL2.[1] 7.[Maximummark:6] Findtheequationofthelinewhichisparalleltothex-axisandpassesthroughA(1,4).[2] Findtheequationofthelinewhichisparalleltothey-axisandpassesthroughA(1,4).[2] FindtheequationofthelinepassingthroughtheoriginandA(1,4).[2] 8.[Maximummark:9][withoutGDC] ConsiderthelineLonthediagrambelow. (a)Writedown thegradientoftheline[1] they-intercept[1] thex-intercept[1] Writedowntheequationofthelineinthegradient-interceptformy=mx+c.[2] GiventhatP(2,y)andQ(x,2)lieontheline,writedownthevaluesofxandy.[2] GiventhatA(a,−3)andB(−3,b)lieontheline,findthevaluesofaandb.[2] 9.[Maximummark:8][withoutGDC] ConsiderthelineLwithequationy+3x=5.ThelineL1isparalleltoLandpassesthroughthe point(7,−5). FindthegradientofL1.[1] FindtheequationofL1intheformy=mx+c.[3] Findthex-coordinateofthepointwherelineL1crossesthex-axis.[2] Drawthetwolinesonthediagrambelow.[2] 10.[Maximummark:9][withoutGDC] ConsiderthepointsA(3,6)andB(4,9).ThelineL1passesthroughAandB.

  3. (a)Find thegradientofthelineL1[1] theequationofthelineL1.[2] FindthelineL2whichisperpendiculartoL1andpassesthroughthepointA.[2] ExpressbothequationsofL1andL2intheformax+by=c,wherea, b,andc areintegers.[2] Writedownthesolutionofthetwosimultaneousequationsfoundin(c)andmakeacomment aboutthesolutionbysketchingthetwolinesL1,L2.[2] 11.[Maximummark:7][withoutGDC] ConsiderthepointsA(−3,7)andB(5,10). FindthegradientofthelineLpassingthroughAandB.[2] FindthecoordinatesofthemidpointMbetweenAandB.[1] FindtheequationofthelinewhichisperpendiculartoLandpassesthroughthepointM.(i.e.,the perpendicularbisectorofthelinesegmentAB)[2] FindthedistancebetweenthepointsAandM.[2] 12.[Maximummark:7][withoutGDC] ThepointsA(3,2)andB(7,4)areshowninthediagrambelow. LetLbetheperpendicularbisectorofthelinesegmentAB. FindtheequationofL.[5] Writedownthey-interceptofLanddrawanaccuratelineforLonthediagramabove.[2] [Maximummark:7][withGDC] FindtheperpendicularbisectorofthelinesegmentABwithA(9,14)andB(21,42),intheform ax+by=d,wherea,b,darepositiveintegers. [Maximummark:6][with/withoutGDC] FindthecoordinatesofapointPonL1:y=x+2giventhatthedistancebetweentheoriginandP is6. [Maximummark:6][withoutGDC] FindthecoordinatesofapointAonL1:y=x+2andapointBonL2:y=2x+1,suchthat M(6,9)isthemidpointofthelinesegmentAB. [Maximummark:6][withoutGDC] Thefollowingdiagramshowsthelines3x−5y=0,4x+y=7andthepointP(2,2).Alineis drawn from P to intersect with 3x − 5y= 0 at Q, and with 4x + y = 7 at R, so that P is the midpointofQR. FindtheexactcoordinatesofQandR.

  4. 17.[Maximummark:10][withoutGDC] LetA(4k,5k)beapointonthelineLwithequationx=y,wherekisaninteger. 45 VerifythatthepointAliesonthelineL.[2] FindthepossiblevaluesofkifthedistancebetweentheoriginandAequals12. [4] WritedownthecoordinatesofthetwopointsonthelineLwhosedistancefromtheoriginisequal to12.[2] Demonstrateonthediagrambelowtheresultofquestion(c).[2] 18.[Maximummark:13][with/withoutGDC] ConsiderthelineL1withequationy=3x−4.ThelineL2isparalleltoL1andpassesthroughthe pointA(2,10).ThelineL3isperpendiculartoL1andpassesthroughthepointA(2,10). (a)Findtheequation ofthelineL2[3] ofthelineL3.[3] ThelinesL1andL3intersectatpointB.FindthecoordinatesofpointB.[2] FindthedistancebetweenthepointsAandB.[2] SketchadiagramanddeducethedistancefromthepointAtothelineL1.[3] 19.[Maximummark:23] ThepointsA(4,3),B(8,3),andC(4,9)areshowninthediagrambelow. FindtheequationoftheperpendicularbisectorofthelinesegmentAB.[2] FindtheequationoftheperpendicularbisectorofthelinesegmentAC.[2] WritedownthecoordinatesofthepointofintersectionPofthetwobisectorsandshowthatPis themidpointofthelinesegmentBC.[3] Findtheareasofthetriangles ABC[2] ABP[2] ACP[2] FindtheequationoftheperpendicularbisectorLofthelinesegmentBCintheformax+by= d,wherea,b,dareintegers.[5] ShowthatthelineLdoesnotpassthroughA.[2] DrawthethreeperpendicularbisectorsofthesidesofABConthediagramabove.[3] 20.[Maximummark:10][with/withoutGDC] Thefollowingthreelinesl1,l2,andl3aredefinedwithequations: l1:x+y=6 l2:2x−y=8 l3:x=−3 FindthecoordinatesofthecommonpointAbetweenthelinesl1andl2.[2] Writedownthecoordinatesof (i)thecommonpointBbetweenthelinesl1andl3[2]

  5. (ii)thecommonpointCbetweenthelinesl2andl3.[2] (c)Hence,findtheareaofthetriangleABC.[4]

More Related