0 likes | 14 Views
Simplify the complex mathematical concepts of energy principles and variational methods with this solution manual. Perfect for students looking for thorough explanations to succeed in their courses. Contact us to gain access to this essential academic resource!<br><br>
E N D
Email: smtb98@gmail.com Telegram: https://t.me/solutionmanual Contact me in order to access the whole complete document. WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 smtb98@gmail.com smtb98@gmail.com 1 Solutions Manual to ENERGY PRINCIPLES AND VARIATIONAL METHODS IN APPLIED MECHANICS Third Edition J. N. Reddy Department of Mechanical Engineering Texas A&M University College Station, Texas, 77843-3123
Email: smtb98@gmail.com Telegram: https://t.me/solutionmanual Contact me in order to access the whole complete document. WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 Solutions Manual to ENERGY PRINCIPLES AND VARIATIONAL METHODS IN APPLIED MECHANICS Third Edition complete document is available on https://solumanu.com/ *** contact me if site not loaded
smtb98@gmail.com Email: smtb98@gmail.com Telegram: https://t.me/solutionmanual Contact me in order to access the whole complete document. WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 Introduction and Mathematical smtb98@gmail.com 1 Preliminaries 1.1 Let C be a vector along the line passing through the terminal point of vector A and parallel to vector B. Let r be the position vector to an arbitrary point on the line parallel to vector B and passing through the terminal point of vector A. Then the desired equation of the line is (see Fig. P1.1) B |B|, r = A + C = A + β ˆ eB, ˆ eB= FigP2-1 where β is a real number. ˆ e = + β = + α r A A B FigP2-3 B B A B • Line parallel to vector B z r A A B r y B • ˆ e = β C C A B r • A O C A x Fig. P1.1 Fig. P1.2 1.2 Let r denote the position vector. The vectors connecting the terminal points of vectors A, B, C, and r should be in the plane. Thus, for example, the scalar triple product of the vectors B−A, C−A, and r−A should be zero in order that they are co-planar, as shown in Fig. P1.2: (C − A) × (B − A) · (r − A) = 0 [or For example, if A = ˆ e1, B = ˆ e2, and C = ˆ e3, then the equation of the plane is −x−y − z + 1 = 0 or x + y + z = 1. εijk(Ci− Ai)(Bj− Aj)(xk− Ak) = 0] 1.3 Consider the parallelogram formed by points O, A, C, and B, as shown in Fig. P1.3. Let us denote the line segment connecting O to A as vector A, O to B as vector B, O to C as vector C, and B to A as vector D. Suppose that vectors C and D intersect and cross at distances αC and β D. Then we have the following relations among the four vectors: A = αC + (1 − β)D; A = β D + (1 − α)C (1) 1 complete document is available on https://solumanu.com/ *** contact me if site not loaded
2 REDDY: ENERGY PRINCIPLES AND VARIATIONAL METHODS B = αC − β D; B = (1 − α)C − (1 − β)D (2) FigP2-6 From each pair of equations, we obtain the same result, namely, α = β = 0.5, implying that vectors C and D bisect each other. (1 ) C C A D (1 ) C D BA D OC C B (1 ) D C A B A C (1 ) D O Fig. P1.3 1.4 We begin with the left side of the equality and arrive at the right side: A × (B × C) = Aiˆ ei× (ˆ e‘εjk‘BjCk) = AiBjCkεjk‘εpi‘ˆ ep = (δjpδki− δjiδkp)AiBjCkˆ ep= AiBjCiˆ ej− AiBiCkˆ ek = (A · C)B − (A · B)C. 1.5 An arbitrary vector A can be decomposed into a (vector) sum of two vectors, one along any arbitrary line (A1) and the other (A2) perpendicular to it (with magnitudes |A1| = |A|cosθ and |A2| = |A|sinθ, respectively, where θ is the angle between vectors A1and A). Because the unit vector along the line is ˆ e, we have A1= (A·ˆ e)ˆ e. To determine the vector A2perpendicular to the line along ˆ e, consider the vector product A × ˆ e, which is perpendicular to the plane of both A and ˆ e (that is, out of the page). Then, vector ˆ e×(A׈ e) lies in the plane of vectors A and ˆ e, and it is perpendicular to vector A and ˆ e, with the magnitude |A × ˆ e| = |A|sinθ. Hence, we have ˆ ep=ˆ e × (A × ˆ e) |A|sinθ A = |A| cosθ ˆ e + |A| sinθ ˆ ep= (A ·ˆ e)ˆ e + ˆ e × (A ׈ e), . 1.6 (a) δii= δ11+ δ22+ δ33= 1 + 1 + 1 = 3. (b) Fijδij = Fi1δi1+ Fi2δi2+ Fi3δi3. Clearly, the first term is zero unless i = 1, the second is zero unless i = 2, and the third is zero unless i = 3. Thus, we have Fijδij= F11+F22+F33= Fii. The given identity follows as a special case, Fij= δij. (c) Fijδjk= Fi1δ1k+ Fi2δ2k+ Fi3δ3k. Clearly, the first term is zero unless k = 1. If k = 1, the remaining two terms are zero giving Fi1. Similarly, the second term is zero unless k = 2, which makes the first and third terms zero so that the result is Fi2. Finally, the third term is zero unless k = 3, which makes the first two terms zero, complete document is available on https://solumanu.com/ *** contact me if site not loaded
smtb98@gmail.com smtb98@gmail.com 3 SOLUTIONS MANUAL (CHAPTER 1) giving Fi3. Thus, Fijδjkis equal to Fik. Alternatively, we have Fijδjk= 0 unless j = k because δjk= 0 unless j = k. (Caution: replace j by k only in the coefficient of δjkand then remove δjkfrom the expression; do not write Fijδjk= Fikδkk, which has no meaning as no subscript can appear more than twice!). The given identity follows as a special case, Fij= δij. (d) εmjkεnjk= δmnδjj− δmjδjn= 3δmn− δmn= 2δmn, where we have used the ε − δ identity (expanded about the common subscript k) and parts (a) and (c) of this problem in arriving at the result. (e) Follows from Parts (a) and (d). (f) Fijεijk= −Fijεikj= −Fjiεjki. In the first step subscripts j and k are interchanged, which results in the change of sign. In the second step, the subscript i is renamed as j and subscript j as i (in the whole expression). Since εjki= εijk, we have Fijεijk= −Fjiεjki → (Fij+ Fji)εijk= 0. Now replace Fijwith AiAjand find that (AiAj+ AjAi)εijk= 2AiAjεijk= 0, which was to be proved. Thus, if Fijis symmetric, it follows that Fijεijk= 0. Con- versely, if Fijεijk= 0, then Fij= Fji, i.e., the second-order tensor F is symmetric. 1.7 We have (A × B) · (B × C) × (C × A) = (εijkAiBjˆ ek) · [(εrstBrCsˆ et) × (εmnpCmAnˆ ep)] = εijkεrstεmnpAiBjBrCsCmAnεtpqδkq = (δitδjp− δipδjt)εrstεmnpAiBjBrCsCmAn = (εrsiεmnj− εrsjεmni)AiBjBrCsCmAn = (B × C · A)(C × A · B) − (B × C · B)(C × A · A) = (B × C · A)(C × A · B) = (B × C · A)2 Note that B × C · A = A × B · C. 1.8 (A × B) × (C × D) = (εijkAiBjˆ ek) × (εmnpCmDnˆ ep) = εijkεkpqεmnpAiBjCmDnˆ eq = εmnp(δipδjq− δiqδjp)AiBjCmDnˆ eq = εmniAiBjCmDnˆ ej− εmnjAiBjCmDnˆ ei = (C × D · A)B − (C × D · B)A. 1.9 Let A = (1,1,0,0), B(0,1,0,1),C = (0,0,1,1) and D = (1,1,1,1). Then the relation αA + βB + γC + µD = 0 complete document is available on https://solumanu.com/ *** contact me if site not loaded
4 REDDY: ENERGY PRINCIPLES AND VARIATIONAL METHODS implies α + µ = 0, α + β + µ = 0, γ + µ = 0, β + γ + µ = 0 whose solution is α = γ = −µ. Hence, the vectors are linearly dependent. 1.10 The linear relation αA + βB + γC = 0 implies 2α − γ = 0, −α + β + γ = 0, α − β = 0 whose solution is trivial. Hence, the vectors are linearly independent. 1.11 (a) First check for linear independence. Set αA + βB + γC = 0 and find that α − 4β + 2γ = 0, −α − 5β + γ = 0. 3α + 3β + γ = 0, The solution of these equations is α = −2β and γ = 3β. Hence, the set is linearly dependent and does not span <3. (b) Set αA + βB + γC = 0 and find that −2β − γ = 0. α + β + γ = 0, α + β = 0, The solution of these equations is trivial α = β = γ = 0. Hence, the set is linearly independent. Next express an arbitrary vector x = x1ˆ e1+ x2ˆ e2+ x3ˆ e3in <3as a linear combination of the given vectors x = c1A + c2B + c3C and show that ciwill not imply a relation among the components xiof the vector (because they are arbitrary). We have −2c1− c3= x3, c1+ c2+ c3= x1, c1+ c2= x2, whose solution is c1=1 c2=1 c3= x1− x2, 2(x2− x1− x3), 2(x1+ x2+ x3). In particular, the vectors ˆ e1, ˆ e2, and ˆ e3are represented by the vectors A, B, and C as ˆ e1= −1 2A +1 ˆ e2=1 2A +1 ˆ e3= −1 2A +1 2B − C, 2B + C, 2B. Hence, the set (A, B, C) spans <3.
Email: smtb98@gmail.com Telegram: https://t.me/solutionmanual Contact me in order to access the whole complete document. WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 smtb98@gmail.com 1.12 Follows as outlined in the problem statement. smtb98@gmail.com 5 SOLUTIONS MANUAL (CHAPTER 1) 1.13 (a) Let ˆ eibe the unit base vectors in the current orthogonal system and ˆ e0 base vectors in the new coordinate system. The vector ˆ e0 vector ˆ e1− ˆ e2+ ˆ e3but its magnitude must be unity ˆ e0 1= |ˆ e1− ˆ e2+ ˆ e3|= The vector ˆ e0 the unit normal to the plane, which is given by ibe the unit 1has the same direction as the ˆ e1− ˆ e2+ ˆ e3 1 √3(ˆ e1− ˆ e2+ ˆ e3). 2is along the normal to the plane 2x1+ 3x2+ x3− 5 = 0. Hence, ˆ e0 2= ˆ n, ∇(2x1+ 3x2+ x3− 5) |∇(2x1+ 3x2+ x3− 5)|= 1 √14(2ˆ e1+ 3ˆ e2+ ˆ e3). 2ˆ e1+ 3ˆ e2+ ˆ e3 p(2)2+ (3)2+ (1)2 ˆ e0 2= = The third basis vector in an orthonormal system is related to the other two vectors by ???????? = ˆ e1 − 1 √42(−4ˆ e1+ ˆ e2+ 5ˆ e3). ???????? ˆ e1 1 √3−1 2 √14 3 √42 ˆ e2 ˆ e3 1 √3 1 √14 ˆ e0 3= ˆ e0 1× ˆ e0 √3 3 √14 ? 2= ? ? ? ? ? 1 1 2 3 2 √42− √42− √42 √42+ √42 − ˆ e2 + ˆ e3 = Thus, the two coordinate systems are related by (note the matrix of direction cosines) (b) We have −1 √3 3 √14 1 √42 1 1 √3 2 √14 −4 √42 √3 1 √14 5 √42 ˆ e0 ˆ e0 ˆ e0 ˆ e1 ˆ e2 ˆ e3 1 = . 2 3 1=vector connecting point (1,−1,3) to point(2,−2,4) vector magnitude =(2ˆ e1− 2ˆ e2+ 4ˆ e3) − (ˆ e1− ˆ e2+ 3ˆ e3) magnitude 1 √6(−ˆ e1+ ˆ e2+ 2ˆ e3) ???????? = ˆ e1 √18+ 1 √18(3ˆ e1+ 3ˆ e2+ 0.ˆ e3) = ˆ e0 1 √3(ˆ e1− ˆ e2+ ˆ e3) = ˆ e0 3= (given) ???????? − ˆ e1 −1 √6 1 √3 ˆ e2 1 √6 −1 √3 ? ˆ e3 2 √6 1 √3 ˆ e0 2= ˆ e0 3× ˆ e0 1= ? ? ? ? ? 1 2 1 2 1 1 √18 √18− 1 √2(ˆ e1+ ˆ e2). √18 √18− √18 − ˆ e2 + ˆ e3 =
6 REDDY: ENERGY PRINCIPLES AND VARIATIONAL METHODS The transformation matrix relating (ˆ e0 1,ˆ e0 2,ˆ e0 3) to (ˆ e1,ˆ e2,ˆ e3) is given by (aij= ˆ e0 √3−1 1 √2 −1 1 1 √3 1 √2 1 √6 √3 0 i· ˆ ej) [A] = 2 √6 √6 (c) We have ˆ e0 1= ˆ e1cos30◦+ ˆ e2sin30◦, ˆ e0 2= ˆ e1(−sin30◦) + ˆ e2cos30◦, ˆ e0 3= ˆ e3( given) √3 2 −1 1 2 0 √3 2 [A] = 0 2 0 0 1 1.14 Follows from the definition √3 2 1 2 0 √3 2 [A] = 1 2 0 − 0 0 1 1.15 Follows from the definition 1 1 0 √2 √2 −1 1 2 1 √2 1 √2 [A] = 2 1 2 −1 2 1.16 The vector is given by A =1 2(6ˆ e1− 6ˆ e2+ 4ˆ e3) − (ˆ e1− ˆ e2+ 3ˆ e3) = 2ˆ e1− 2ˆ e2− ˆ e3. The direction cosines are (2/3,−2/3,−1/3). B |B|=6−4 =2 1.17 (a) The orthogonal projection of A onto B is A · (b) The angle between A and B is 3. 3 ?A · B ? ? ? 2 θ = cos−1 = cos−1 → θ = 82.34◦. |A| |B| 5 × 3 1.18 (a) This is obvious. (b) We have ? ? ?dA ? ? ? ? ? ? d2A dt2 d2A dt2 d3A dt3 Ad2A dt2 d2A dt2 d3A dt3 d dt AdA dA dt AdA = + + dt dt AdA dt ? = dt
smtb98@gmail.com smtb98@gmail.com 7 SOLUTIONS MANUAL (CHAPTER 1) 1.19 (a) We have ∂ 2=r 1 2=1 1 2−12xi= ˆ eixi(xjxj)−1 ∇(r) = ˆ ei 2ˆ ei(xjxj) ∂xi(xjxj) r. (b) We have ∂ n 2= ˆ ein n−2 2 n 2−12xi= nˆ eixi(xjxj) = nrn−2r. ∇(rn) = ˆ ei ∂xi(xjxj) 2(xjxj) Alternatively, ∂ ∂r ∂xi ∂xi(rn) = nrn−1ˆ ei = nrn−2xiˆ ei= nrn−2r. ∇(rn) = ˆ ei (c) We have, in view of the result in (b) ∂2 ?nrn−2xi ?= n(n − 2)rn−3∂r ∂ ∂xixi+ nrn−2δii ∇2(rn) = ∂xi∂xi(rn) = = n(n − 2)rn−3xi ∂xi rxi+ 3nrn−2= [n(n − 2) + 3n]rn−2= n(n + 1)rn−2. (d) We have (note that A is a constant vector) ? ? δijAj+ xj∂Aj ∂ ∇(r · A) = ˆ ei ∂xi(xjAj) = ˆ ei = ˆ ei(Ai+ 0) = A. ∂xi (e) ?∂xj ? ∂ ∂xiAk+ xj∂Ak ∇ · (r × A) = ˆ ei· ∂xi(εjk‘xjAkˆ e‘) = εjk‘δi‘ = (0 + 0) = 0. ∂xi (f) Carrying out the indicated operation, we obtain ? ? ∂ δirAs+ xr∂As ∇ × (r × A) = ˆ ei× ∂xi(εrstxrAsˆ et) = εrstˆ ei× ˆ et = εrstεjitˆ ej(δirAs+ 0) = εistεjitˆ ejAs= −2ˆ ejδsjAs= −2A. ∂xi (g) ?∂r ? ∂ =xi rAi=1 ∇ · (rA) = ˆ ei· ∂xi(rAjˆ ej) = ˆ ei· ˆ ej rr · A. ∂xiAj (h) Carrying out the indicated operation, we obtain ?xi r(r × A). ? ?√xjxjAkˆ ek rAk ?= ˆ ei× ˆ ek rεiktxiAkˆ et=1 ∂ ∇ × (rA) = ˆ ei× rAk+ 0 ∂xi ?xi ? =1 = εiktˆ et
8 REDDY: ENERGY PRINCIPLES AND VARIATIONAL METHODS ∂2F ∂xi∂xjis symmetric in i and j, we obtain ? 1.20 (a) Since ? ? ? ∂2F ∂xi∂xj ∂ ˆ ej∂F ∂xj ∇ × (∇F) = × ˆ ei = εijkˆ ek = 0. ∂xi (b) ? ? ? ? ∂2Ak ∂xi∂xj ∂2Ak ∂xi∂xj ∂ εjk‘∂Ak ∇ · (∇ × A) = · ˆ ei ˆ e‘ = εjk‘δi‘ = εijk = 0, ∂xi ∂xj because of the symmetry of Ak,ijin i and j. ∂2F ∂xi∂xjis symmetric in i and j and ∂2G ∂xi∂xkis symmetric in i and k, we obtain ? ? ∂2F ∂xi∂xj ∂xk ∂xj ∂xi∂xk (c) Since ? ? ? ∂ ˆ ej∂F ∂xj ∂2F ∂xi∂xj ∂G × ˆ ek∂G ∂G ∂xk +∂F ∇ · (∇F × ∇G) = · ˆ ei ∂xi ∂xk +∂F ? ∂2G ∂xi∂xk ? = εjk‘(ˆ ei· ˆ e‘) ? ∂xj ∂2G = εijk = 0. (d) ?∂F ? ∂ ∂xiG + F∂G ∇(FG) = ˆ ei = ∇F G + F ∇G. ∂xi(FG) = ˆ ei ∂xi (e) ? ∂xiF + Ai∂F ? ?∂Aj ? ∂ ∂xiF + Aj∂F ∇ · (FA) = · (ˆ ejAjF) = δij ˆ ei ∂xi ∂xi =∂Ai = ∇ · AF + A · ∇F. ∂xi (f) ? ? ?∂Aj = F∇ × A − A × ∇F. ? ∂ ∂xiF + Aj∂F ∇ × (FA) = × (ˆ ejAjF) = εijkˆ ek ∂xiF − εjikˆ ekAj∂F ˆ ei ∂xi ∂xi = εijkˆ ek∂Aj ∂xi (g) First, consider ?∂Aj ? ∂xiBj+ Aj∂Bj ∂ ∇(A · B) = ˆ ei = ∇A · B + ∇B · A. ∂xi(AjBj) = ˆ ei (1) ∂xi Next consider ? ? εjkpˆ ep∂Bk = ˆ eqεqipεjkpAi∂Bk A × ∇ × B = (ˆ eiAi) × ∂xj ∂xj complete document is available on https://solumanu.com/ *** contact me if site not loaded
smtb98@gmail.com smtb98@gmail.com 9 SOLUTIONS MANUAL (CHAPTER 1) = ˆ eq(δqjδik− δqkδij)Ai∂Bk = ∇B · A − A · ∇B. = ˆ ejAi∂Bi − ˆ ekAi∂Bk ∂xj ∂xj ∂xi (2) Therefore, A × ∇ × B + B × ∇ × A = ∇B · A − A · ∇B + ∇A · B − B · ∇A = ∇A · B + ∇B · A − (A · ∇B + B · ∇A). From Eqs. (1) and (2) the required vector identity follows. (h) ?∂Aj ? ∂ ∂xiBk+ Aj∂Bk ∇ · (A × B) = ˆ ei· ∂xi(εjk‘AjBkˆ e‘) = εijk = ∇ × A · B − ∇ × B · A. ∂xi (i) ∂ ∇ × (A × B) = ˆ ei × (AjBkεjkpˆ ep) ?∂Aj ∂xi ? ∂xiBk+ Aj∂Bk ?∂Aj ∂xiBi+ Aj∂Bi = B · ∇A + A∇ · B − B∇ · A − A · ∇B. = εjkpεqipˆ eq ∂xi ? ∂xiBk+ Aj∂Bk ? = (δjqδki− δjiδkq)ˆ eq ?∂Aj ∂xi ?∂Ai ? ∂xiBk+ Ai∂Bk − ˆ ek = ˆ ej ∂xi ∂xi (j) Since ∇2= ∇ · ∇, we have ? ? ∂2F ∂xi∂xjG + 2ˆ ej∂F ? ∂ ˆ ej∂F ∂xjG + Fˆ ej∂G ∂2F ∂xi∂xjG +∂F ∇2(FG) = ˆ ei · ∂xi ? ∂xj ∂G ∂xi · ˆ ei∂G ? ?∂F ?? ∂2G ∂xj∂xi ∂G ∂xj = ˆ ei· ˆ ej + ˆ ej + F ∂xj ∂xi ∂2G ∂xj∂xi = ˆ ei· ˆ ej + Fˆ ei· ˆ ej ∂xj ∂xi ∂2G ∂xi∂xi ∂2F ∂xi∂xiG + 2∇F · ∇G + F = ∇2FG + 2∇F · ∇G + F∇2G = 1.21 (a) We begin with (see Table 1.2.2) ∂ ∂r+1 ∂ ∂θ+ ˆ ez ∂ ∂z, ∇ = ˆ er rˆ eθ A = Arˆ er+ Aθˆ eθ+ Azˆ ez.
10 REDDY: ENERGY PRINCIPLES AND VARIATIONAL METHODS Then we have ? ? ∂ ∂r+ ˆ eθ1 ∂ ∂θ+ ˆ ez ∂ ∂z + ˆ erˆ ez∂Az ∇A = ˆ er (Arˆ er+ Aθˆ eθ+ Azˆ ez) r = ˆ erˆ er∂Ar + ˆ erˆ eθ∂Aθ +1 rˆ eθˆ er∂Ar +1 ∂r ∂r ∂r rˆ eθ∂ˆ eθ ∂θ rˆ eθ∂ˆ er + ˆ ezˆ er∂Ar +Ar rˆ eθˆ eθ∂Aθ + ˆ ezˆ eθ∂Aθ +1 +Aθ rˆ eθˆ ez∂Az ∂θ ∂θ ∂θ ∂θ + ˆ ezˆ ez∂Az ∂z ∂z ∂z ?∂Ar ? ? = ˆ erˆ er∂Ar + ˆ erˆ eθ∂Aθ + ˆ eθˆ er1 − Aθ ∂r ∂r r ∂θ Ar+∂Aθ ? + ˆ erˆ ez∂Az + ˆ ezˆ er∂Ar + ˆ eθˆ eθ1 ∂r ∂z r ∂θ +1 rˆ eθˆ ez∂Az + ˆ ezˆ eθ∂Aθ + ˆ ezˆ ez∂Az , ∂θ ∂z ∂z where the following derivatives of the base vectors are used: ∂ˆ er ∂θ ∂ˆ eθ ∂θ = −ˆ er. = ˆ eθ, (b) From Table 1.2.2, we have ? ? ∂R+1 ∂ ∂ 1 ∂ ∂θ ∇ = ˆ eR Rˆ eφ Rsinφˆ eθ ∂φ+ and A = ARˆ eR+ Aφˆ eφ+ Aθˆ eθ. Hence, we have ? = ˆ eR ? ∂R+1 ∂ ∂R(ARˆ eR+ Aφˆ eφ+ Aθˆ eθ) +1 1 Rsinφˆ eθ ?∂AR +1 Rˆ eφ 1 Rsinφˆ eθ ∂θ + Aφcosφˆ eθ+∂Aθ ∂θˆ eθ− Aθ(sinφˆ eR+ cosφˆ eφ) =∂AR ∂R ∂ ∂ 1 ∂ ∂θ ˆ eR Rˆ eφ Rsinφˆ eθ (ARˆ eR+ Aφˆ eφ+ Aθˆ eθ) ∂φ+ ∂ ∂φ(ARˆ eR+ Aφˆ eφ+ Aθˆ eθ) Rˆ eφ ∂ ∂θ(ARˆ eR+ Aφˆ eφ+ Aθˆ eθ) ∂Rˆ eR+∂Aφ ?∂AR h∂AR + ? ∂Rˆ eφ+∂Aθ = ˆ eR ∂Rˆ eθ ∂φˆ eφ− Aφˆ eR+∂Aθ ˆ eR+ ARsinφˆ eθ+∂Aφ ? ∂φˆ eR+ ARˆ eφ+∂Aφ ∂φˆ eθ ∂θˆ eφ + i ?∂AR ? ˆ eRˆ eR+∂Aφ ∂Rˆ eRˆ eφ+1 ˆ eφˆ eR+∂Aθ − Aφ ∂Rˆ eRˆ eθ R ∂φ
smtb98@gmail.com where the following derivatives of the base vectors are used: smtb98@gmail.com 11 SOLUTIONS MANUAL (CHAPTER 1) ?∂AR ?∂Aφ ? ? ? 1 ? AR+∂Aφ ? 1 ˆ eθˆ eR+1 ˆ eφˆ eφ+1 ∂Aθ ∂φˆ eφˆ eθ − Aθsinφ + Rsinφ 1 Rsinφ ∂θ R ∂φ R ? ARsinφ + Aφcosφ +∂Aθ − Aθcosφ ˆ eθˆ eφ+ ˆ eθˆ eθ, + ∂θ Rsinφ ∂θ ∂ˆ eφ ∂φ ∂ˆ eφ ∂θ ∂ˆ eR ∂φ ∂ˆ eR ∂θ ∂ˆ eθ ∂θ = −ˆ eR, = −(sinφˆ eR+ cosφˆ eφ). = ˆ eφ, = sinφˆ eθ, = cosφˆ eθ, 1.22 Follows from the gradient theorem, Eq. (1.2.55), by setting φ = 1. 1.23 Note that (∂r ∂xi= xi/r) ∂r ∂xi ∇(r2) = 2rˆ ei = 2ˆ eixi= 2r. Using the divergence theorem, we can write I Z ∇ · rdΩ = δiiV = 3V, r · ˆ ndΓ = Γ Ω where V is the volume of the region Ω. 1.24 Using the divergence theorem, we can write Z I I ∂φ ∂ndΓ. ∇ · ∇φdΩ = ˆ n · ∇φdΓ = Ω Γ Γ 1.25 The integral relations are obvious. For example, the identity in (1) is obtained by sub- stituting A = φ∇ψ for A into Eq. (1.2.57) Z The left side of the equality, as per Problem 1.20(e) with A replaced with ∇ψ, is equal to Z The identity in (2) follows directly from (1) by interchanging φ and ψ and subtracting the resulting identity from the one in (1). Finally, identity (3) follows from (2) by replacing ψ with ∇2ψ. I I φ∂ψ ∂ndΓ. ∇ · (φ ∇ψ)dΩ = ˆ n · (φ ∇ψ)dΓ = Ω Γ Γ Z Z ?∇φ · ∇ψ + φ∇2ψ?dΩ. ∇ · (φ ∇ψ)dΩ = (∇φ · ∇ψ + φ∇ · ∇ψ)dΩ = Ω Ω Ω 1.26 See Problem 1.13(a) for the basis vectors of the barred coordinate system in terms of the unbarred system; the matrix of direction cosines [A] is given there. Then the components of the dyad in the barred coordinate system are 0 −1 3 −2 1 0 [¯T] = [A][T][A]T= [A] [A]T. −1 −2 0 complete document is available on https://solumanu.com/ *** contact me if site not loaded