biomedical engineering design course content industrial v academic viewpoints l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints PowerPoint Presentation
Download Presentation
Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints

Loading in 2 Seconds...

play fullscreen
1 / 21

Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints - PowerPoint PPT Presentation


  • 302 Views
  • Uploaded on

Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp. Why? ABET requires a capstone design course. No BME Design Textbook exists. No BME Specific Design Taxonomy Exists.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints' - Ava


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
biomedical engineering design course content industrial v academic viewpoints

Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints

Paul King, Vanderbilt University

Richard Fries, Datex-Ohmeda Corp.

slide2
Why?
  • ABET requires a capstone design course.
  • No BME Design Textbook exists.
  • No BME Specific Design Taxonomy Exists.
  • Are Industrial & Academia Viewpoints different?
  • Are there any suggestions regarding additions?
abet statement criterion 4
ABET Statement: Criterion 4

“Students must be prepared for engineering practice through the curriculum culminating in a major design experience based upon the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints that include most of the following considerations: economic; environmental; sustainability; manufacturability; ethical; health and safety; social; and political.”

abet criteria for bme design
ABET Criteria for BME Design
  • One course, primarily design, preferably senior (Jr acceptable)
  • More than ½ engineering design
  • Must require prerequisite(s)
  • Reference: 2000-2001 Criteria for Engineering Programs – ABET p14,15
no bme design textbook exists
No BME Design Textbook exists
  • Teaching notes: Mixture of ME/EE/NSF
  • Proposal to Whittaker (Outline)->Reject
  • Fries: Reliable Design of Medical Devices
  • K&F -> Whittaker (Outline) ->Accept
  • 4 Chapters -> Whittaker -> Reject
no bme specific taxonomy exists
No BME Specific Taxonomy Exists.
  • NSF ERC in Bioengineering Education has a Design Thrust, part of the work to be done involves development of a Taxonomy of Design Education.
  • Can we determine this taxonomy via scrutiny of the literature and a survey of industry and academia?
survey
Survey
  • 42 Topics, H,M,L,X & ask for additions
  • Industry (Fries)
  • Academia (US, King, see: http://vubme.vuse.vanderbilt.edu/King/design_education.htm )
bme specific topics
BME Specific Topics

7/42 – Design Topic Survey = Biomedical

  • Definition: Medical Device, History
  • FDA: Human Factors, Trials, Reporting, Documenting
  • Materials & environment(s)
  • Animal & Clinical Trials
  • Safety, Reliability, …
results
Results:
  • 17 Academic Responses (47US)
  • 9 Industrial (8 Industries)
  • H=3, M=2, L=1, X=0, averages & t-test
  • … to date
highest rated academia
Highest Rated (Academia)
  • Product Definition Issues – Initial Specification Issues – 2.88 (out of 3)
  • Progress Reports – Expectations for Written Reports – 2.76
  • Product Specification – Requirements, Design, Reliability, Tracking – 2.65
  • Design Examples – 2.53
highest rated industry
Highest Rated - Industry
  • Product Specification – Requirements, Design, Reliability, Tracking AND Risk Analysis/Hazard Analysis – 2.89
  • Design Examples – 2.78
  • Product Definition Issues – Initial Specification AND Design Documentation Requirements - 2.67
lowest academia
Lowest - Academia
  • Professional Societies and LicensureANDBusiness Plan Development 1.24 AND The Future of the Design Process
  • Reverse Engineering – Software and Hardware –1.17
  • Poster Presentation Basics AND History of Biomedical Engineering Devices- 1.06
  • Accident Reconstruction – 1.00
lowest industry
Lowest - Industry
  • Industrial Design Group Construction and Management AND Accident Reconstruction – 1.0
  • Gannt and Pert Charts and Related Software - .89
  • Professional Societies and Licensure AND Business Plan Development - 78
maximum difference industry academic
Maximum Difference: Industry-Academic
  • Software and Process Design Considerations +.76 (p=0.12)
  • Risk Analysis/Hazard Analysis +.71 (p=0.01)
  • Brainstorming/Idea Generation –.75 (p=.05)
  • Gannt and Pert Charts & Related Software AND Progress Reports – Expectations -.87 (p=0.03)
maximum agreement industry academic
Maximum Agreement: Industry:Academic
  • Accident Reconstruction 1.0 p=1.0
  • QFD (1.89) & Decision Matrix (2.1) p=.99
  • Future of the Design Process (1.2:1.2) p=.97
  • Estimating Life Cycle Costs (1.6) p=.94
  • Formal design (1.8) AND Reverse Engineering (2.2) AND DFMA (1.9) AND FDA/ISO (2.2) p=.9
  • Product Safety & Liability (2.2) p=.88
maximum disagreement industry academic
Maximum Disagreement: Industry:Academic
  • Animal/Clinical Trials, GLP (2.2:1.6) AND Medical Device Definition (2.6:1.9) AND IP Considerations (1.4:2) p=.1
  • Brainstorming (1.6:2.4) p=.05
  • Written Progress Reports (1.9:2.8) p=.04
  • CAD(2.1:1.4) AND Gannt/Pert (.9:1.8) p=.03
  • Risk/Hazard Analysis (2.9:2.1) p=.01
comments gathered
Comments Gathered:
  • . .. the course should prepare students to manage projects in the medical device industry. They should learn about project management and be given the opportunity to develop their interpersonal and communication skills. They should also learn something about business and how a company functions. At Marquette, we are presenting lectures to help prepare them for their careers by including topics such as professional development, career survival and management, and personal finance.
comments continued
Comments, Continued

…Nonetheless, I am a big believer in process, and think the students should leave a design course understanding that design is primarily a decision making process (i.e. Decision-based design) and that by following a process successful designs will be achieved. SUNY-SB

suggested additions
Suggested Additions
  • Ethics (7!)
  • Economics/Cost/benefit analysis (2)
  • Experimental design
  • Clinical experiences
  • Top-down design, Systems engineering
  • OOPs, FOI, Large system errors
to be done
To Be Done
  • More Industrial Responses needed
  • International Survey?
  • Report at ASEE
  • Report at BMES
  • Report in journal form
summary
Summary
  • Preliminary results indicate a fair amount of academic-industrial agreement.
  • Academics emphasize training for reporting (oral/written) and overall project planning v Industry expects reporting ability and delegates planning elsewhere.