Turtle Graphics - PowerPoint PPT Presentation

turtle graphics n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Turtle Graphics PowerPoint Presentation
Download Presentation
Turtle Graphics

play fullscreen
1 / 21
Turtle Graphics
1238 Views
Download Presentation
Audrey
Download Presentation

Turtle Graphics

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Turtle Graphics Objectives To design and construct the class Turtle. To give some details about recursive methods. To present the principles of Turtle Graphics. To construct some Turtle images: trees, Koch curve, Serpinski curve,... Computer Graphics - Lecture 6

  2. Working with Java classes Constructing a class /Constructing the object this. - The class variables: private, … - The class constructors: • Same name as the class; do not have returning type. • Initialise the class’ variables. - The class methods: do an action on the class data. • Type of methods: get/set, draw/print, …. • Action on this  non-static; Create an object (call a constructor) : NameClass obj = new NameClass(a1,a2,…); Call a method obj.nameMethod(a1,a2,…); NameClass.nameMethod(a1,a2,…); Computer Graphics - Lecture 6

  3. Turtle-like Graphics Pens What can turtles (as animals) do? Move forward or backward. Turn left or right. Retreat the head into the shell. Variables used for our Turtle-like Graphics Pens. x, y  give the turtle pen coordinates. Work with doubles dir  the direction to go in radians. pen  the pen’s status (pen=1 draws line) Computer Graphics - Lecture 6

  4. Design of the Class Turtle public void moveTo(int x0,int y0) {x=x0;y=y0;} public void up(){pen=0;} public void down(){pen=1;} public void left(double a){dir+=a;} public void right(double a){dir-=a;} public void forward(int d,Graphics g){} public void backward(int d,Graphics g) {forward(-d,g);} } A Turtle object is a pen such that: - Has a direction to go - Can draw lines. public class Turtle{ public final static double PI=Math.PI; private double dir; private int pen; private double x,y; public Turtle(int x0,int y0,int dir0); public Turtle(); public double getDir(){return dir;} public int getX(){return x}; public int getY(){return y}; Computer Graphics - Lecture 6

  5. Implement and Test the Class Turtle import java.awt.*; import java.applet.*; public class L6Appl1 extends Applet{ Turtle t = new Turtle(); final double PI=Math.PI; public void paint(Graphics g){ t.moveTo(20,20); t.forward(100,g);t.right(PI/2); t.forward(100,g);t.right(PI/2); t.forward(100,g);t.right(PI/2); t.forward(100,g);t.right(PI/2); } } See the execution public Turtle(int x0,int y0,double dir0){ x=x0;y=y0;dir=dir0; pen=1; } public Turtle(){ x=250;y=250;dir=0;pen=1; } public void forward(int d,Graphics g){ double x1,y1; x1=(int)(x+d*Math.cos(dir)); y1=(int)(y+d*Math.sin(dir)); if (pen==1) g.drawLine((int)x,(int)y,(int)x1,(int)y1); x=x1;y=y1; } Computer Graphics - Lecture 6

  6. Recursive Methods A method can call any (known) methods from the class or libraries. A method is recursive when invokes itself. Important Rule: A recursive method must have a termination step that solves directly the problem. type myRecMethod(type1 arg1, type2 arg2, …. ){ if (termination) {calculate directly the result res; return res; } … myRecMethod(a1,a2,…) } int sum (int n, int [] a){ if(n==0) return 0; // termination step int s1 = sum(n-1,a); // recursive call return s1+a[n-1]; } Computer Graphics - Lecture 6

  7. Principles of Turtle Geometry 1. Define Recursively the figure Fn. - termination step: give the form of F0 - define Fn based on Fn-1. 2. Use a Turtle object to draw the figure. - the direction of the Turtle object must be the same. Turtle Geometry represents the simplest way to construct fractals. Computer Graphics - Lecture 6

  8. Binary Tree (1) Consider T(n,l) the binary tree. n - the order n; l - the length. T(0,l)=a line with the length l. T(n,l) is defined as follows: - construct the trunk - left 45 (PI/4) - construct T(n-1,l/2) - right 90 (PI/2) - construct T(n-1,l/2) - left 45 (PI/4) - go back at the root public void tree(int n, int l, Graphics g){ if(l==1 || n==0) return; t.forward(l,g); t.left(PI/4);tree(n-1,l/2,g); t.right(PI/2);tree(n-1,l/2,g); t.left(PI/4); t.backward(l,g); } Computer Graphics - Lecture 6

  9. import java.awt.*; import java.applet.*; import Turtle; public class L6Appl2 extends Applet{ TextField textField1, textField2; Turtle t = new Turtle(); public void init(){ textField1 = new TextField(10); textField2 = new TextField(10); add(textField1); add(textField2); textField1.setText("2"); textField2.setText("200"); } Binary Tree (2) public void paint(Graphics g){ String s = textField1.getText(); int order = Integer.parseInt(s); s = textField2.getText(); int length = Integer.parseInt(s); t.moveTo(10,300); tree(order,length,g); } public boolean action(Event event, Object arg){ repaint(); return true; } The declaration of the method Tree } Execution Computer Graphics - Lecture 6

  10. Computer Graphics - Lecture 6

  11. Computer Graphics - Lecture 6

  12. Computer Graphics - Lecture 6

  13. Consider K(n,l) the Koch’s curve. K(0,l)= a line. K(n,l) is defined as follows: - construct K(n-1,l/3); - left 60 (PI/3); construct K(n-1,l/3) - right 120 (2PI/3); construct K(n-1,l/3) - left 60 (PI/3); construct K(n-1,l/3) The snow flake F(n,k) - construct K(n,l); left 120 (2PI/3); - construct K(n,l); left 120 (2PI/3); - construct K(n,l); left 120 (2PI/3); F(n,k) is a fractal representing an infinite curve bounding a finite area. Koch’s Fractal public void koch(int n, int l, Graphics g){ if(l<2 || n==0){t.forward(l,g);return;} koch(n-1,l/3,g); t.left(PI/3);koch(n-1,l/3,g); t.right(2*PI/3);koch(n-1,l/3,g); t.left(PI/3);koch(n-1,l/3,g); } public void flake(int n, int l, Graphics g){ for(int i=0;i<3;i++){ koch(n,l,g); t.left(2*PI/3); } Computer Graphics - Lecture 6

  14. Computer Graphics - Lecture 6

  15. Computer Graphics - Lecture 6

  16. Computer Graphics - Lecture 6

  17. Sierpinski’s Fractal (curve) public void s(int n, int l, Graphics g){ int d=(int)l/Math.sqrt(2); if(n==0)return; s(n-1,l,g);t.right(PI/4);t.forward((int)d,g); t.right(PI/4);s(n-1,l,g); t.left(PI/2);t.forward(l,g);t.left(PI/2); s(n-1,l,g); t.right(PI/4);t.forward((int)d,g);t.right(PI/4); s(n-1,l,g); } Consider S(n,l) the Sierpinski’s curve. Find d=sqrt(l); S(0,l) = nothing. S(n,l) is defined as follows: - construct S(n-1,l); right 45; forward d - right 45; construct S(n-1,l); - left 90; forward l; left 90; - construct S(n-1,l); - right 45;forward d; right 45 - construct S(n-1,l); S(n,k) is a fractal representing an infinite curve bounded by finite area. Computer Graphics - Lecture 6

  18. Computer Graphics - Lecture 6

  19. Computer Graphics - Lecture 6

  20. Computer Graphics - Lecture 6

  21. Problems to Solve Write an Applet to draw the Curve C(n,l). C(0,l) is a line with the length l. C(n,l) is defined construct C(n-1,l); right 90; construct C(n-1,l);left 90; Define yourself and construct a tree with 4 branches. Problems to read: Recursive Methods: Java Black Book, Using recursion, pp 192. An advanced topic about Turtle fractals: http://www.math.sunysb.edu/~scott/Book331/turtle_in_fractal.html Computer Graphics - Lecture 6