130 likes | 183 Views
Presentaciu00f3n sobre las Potencias de la Unidad Imaginaria y su simplificaciu00f3n.
E N D
UNIDAD EDUCATIVA “ALEXANDER VON HUMBOLDT” Números Complejos DOCENTE: ING. César Alejandro Romero Ferrín
Objetivo General Analizar el conjunto de Números Complejos, sus relaciones, operaciones y propiedades para la resolución de problemas. Objetivos Específicos: • Definir unidad imaginaria. • Conocer y simplificar potencias de i. • Definir el conjunto de los números complejos. • Operar con los números complejos.
Potencias de la Unidad Imaginaria Anteriormente definimos la unidad imaginaria como: Y encontramos también que: ¿Pero qué ocurre si elevamos la unidad imaginaria a cualquier potencia entera positiva o si la elevamos a la potencia cero?
Pues no ocurre mayor problema, solo debemos recordar que así como los radicales se descomponen las potencias también y luego aprenderemos una regla para potencias de orden mayor a 4. Entonces partimos de lo siguiente todo número elevado a la potencia cero es igual a uno; la unidad imaginaria aunque sea imaginaria sigue siendo un número por lo tanto:
Y así; esto va tomando forma ya conocemos que pasa con las siguientes potencias: Pero aún hay más y es aquí donde aplicaremos la descomposición de potencias y sus propiedades.
Partimos de que queremos encontrar: Pues si recordamos una potencia al cubo se puede descomponer de la siguiente manera: Si recordamos ya conocemos el valor para entonces:
Partimos de que queremos encontrar: Pues si recordamos una potencia al cubo se puede descomponer de la siguiente manera: Si recordamos ya conocemos el valor para entonces: Y pues hasta aquí llegaremos porque de aquí en adelante esto es pura matemática, es decir un juego de números.
En resumen sabemos que: Encontremos:
Regla para potencias de la Unidad Imaginaria Se han dado cuenta esto como que sigue un patrón o regla. Entonces supongamos que m es una potencia: 1. Divida el exponente m para 4.
2. Luego para simplificar utilice: Ejemplo: Encontremos
Entonces Aplicamos lo que ya conocemos sobre:
Ejemplo2: Encontremos Entonces: Ejemplo3: Encontremos Entonces: Encontremos Entonces:
Actividad:Practica simplificando las siguientes potencias de la unidad imaginaria y obtén su resultado: