ひので
This presentation is the property of its rightful owner.
Sponsored Links
1 / 65

ひので SOT PowerPoint PPT Presentation


  • 84 Views
  • Uploaded on
  • Presentation posted in: General

ひので SOT. 2013.11.26 一本 観測&装置ゼミ. 1.可視光望遠鏡概要. - Optical Telescope Assembly (OTA) - Focal Plane Package (FPP). OTA: f 50cm Gregorian Telescope. FPP:. M2. HDM (Heat Dump Mirror). OTA と FPP はコリメート光で結び構体変形による焦点移動を回避 PMU は瞳像の近くにおきゴミやむらによる輝度変調を排除偏

Download Presentation

ひので SOT

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Sot

ひので SOT

2013.11.26一本

観測&装置ゼミ


Sot

1.可視光望遠鏡概要

- Optical Telescope Assembly (OTA)

- Focal Plane Package (FPP)

OTA: f50cm

Gregorian Telescope

FPP:

M2

HDM (Heat Dump Mirror)

  • OTAとFPPはコリメート光で結び構体変形による焦点移動を回避

  • PMUは瞳像の近くにおきゴミやむらによる輝度変調を排除偏

  • 偏光モジュレータ(PMU)までは軸対称な光学系  MT = E

  • FPPに向かう光線はTip-tilt mirrorにより像安定化

2次焦点絞り

M1

CLU (collimator Lens Unit)

PMU (Polarizaiton Modulator Unit)

Tip-tilt mirror


Sot

OTA

FPP

OBU

SOTセミナー@花山 2004.12.7


Sot

Gregorian

telescope

Aperture area

f500mm, 153434mm2

Linear central obscuration

0.344( = 172/500 )

HDM outer diameter

32.83mm (Maximum offset pointing angle)

Effective f-length at secondary focus

4527 25 mm

Effective F-ratio at secondary focus

9.055 0.05

Plate scale at secondary focus

21.95 mm/arcsec

Field of view

360 x 200 arcsec

Exiting beam

Collimation

Collimated in air

Angular magnification

16.667

Exit pupil size

f30.0 mm

Exit pupil position

-73.05 from tip-tilt mirror

Chromatic aberration

Nearly zero (<35mm 388—670nm)

OTA光学系の基本パラメータ

SOTセミナー@花山 2004.12.7


Sot

排熱鏡の大きさで決まるSOT(Solar-B)の指向範囲

FOV of Heat Dump Mirror

D◎=32’35”

Sun

SOT FOV

max.offset

= 19.6’

margin ~1.2’

HDM外径 32.83mm

Maximum offset pointing of Solar-B < 19.6’


Sot

OTA斜入射危険領域MAP

第2待避領域

q = 25+5o

遷移領域

許容滞在時間 8min – 10hr

排熱窓 HDM

全頂角22oコーン

許容滞在時間  ∽

+Y

排熱窓

主鏡に入射。熱が内部にこもる

Center sec. ~ 45W

Cold plate ~ 72W

Truss ~ 26W(合計)

Sun shade裏 ~ 40W

q = 10 ~ 16o

許容滞在時間  ~12 hr

118o

90o

遷移領域

q = 10 ~ 16o

許容滞在時間 12 hr - ∽

排熱窓 副鏡

全頂角11oコーン

許容滞在時間  ∽

30o

~16o

4o

~10o

20o

+X

衛星後部から太陽を指向

したときの衛星座標軸

安全領域

q > 20o

許容滞在時間 ∽

内スパイダー ~ 240W/cm2

0.327o < q < 4o

許容滞在時間 < 20 min

比較的安全領域

4.5o < q < 9o

f = 0,120,240o+ 10o

開口からの排熱 ~ 100W

CLU, PMU, CTM-TM温度  ~90C

許容滞在時間 > 10 hr

排熱鏡円筒 ~ 90W/cm2

副鏡 ~ 215W

0.327o < q < 4o

許容滞在時間 < 20 min

外スパイダー ~ 10W/cm2

4o < q < 10o, f = 60, 180, 300o+ 15o

許容滞在時間 < 8 min

安全領域(通常観測時)

q < 0.327o

2000.12.04 MELCO-OTA/NAOJ


Sot

2次絞りでも不要な光を排熱


Sot

M1 (FM sample)

M2 (FM sample)

CTM-TM (theoretical)

CLU (FM measurement)

BFI wavelengths

NFI wavelengths


Sot

Optical layout of SOT

LitrowMirror

Polarizing BS

Folding Mirror

Spectoro-polarimeter

Dual 256 x 1024 CCD

X3 Mag lens

Polarizing BS

Folding Mirrors

Shutter

Slit

Field lens

Grating

Field lens

X2 Mag lens

Filterwheel

Shutter

Preslit

4096 x 2048 CCD

Filterwheel

FieldMask

Birefringent Filter

Broadband Filter Instrument

Narrowband Filter Instrument

50 x 50 CCD

Secondary

Telecentric

lenses

Correlation Tracker

BeamDistributor

Demag lens

HDM

Folding Mirror

ReimagingLens

Image Offset Prisms

Folding Mirror

OTA

Astigmatism corrector lens

Color Coding

OTA

Common Optics

CT

NFI

BFI

SP

Primary

PolarizationModulator

CLU

Tip TiltMirror


Sot

FPP光学レイアウト

SP-CCD

PBS

SP

PBS

BFI

NFI

CT-CCD

FG-CCD

  • - (X, l, P) を同時取得するSP系と(X, Y, P) を同時取得するFG系の共存

  • SPはCCD直前のPBSにより両偏光同時取得

  • BFIのメカシャッタは像面におき回折限界を確保、

  • NFIのメカシャッタは瞳位置におき像面内の波長板位相差をなくす

  • NFIを通る光線はテレセントリックとし、透過波長は像面内で一様とする

SOTセミナー@花山 2004.12.7


Sot

SP Littrow Mirror

SP CCD Radiator

SP Littrow Grating

BFI/NFI Beam Combiner

SP CCD Electronics

SP Slit

BFI Shutter

BFI Filterwheel

NFI Focalplane

Mask

Beam Distributor

SP Slit Scanner

NFI Shutter

BFI/NFI CCD Radiator

NFI Lyot Filter

BFI/NFI CCD Electronics

NFI Filterwheel

CT CCD Electronics

CT wedge wheel

FPP Mechanical Design

SOTセミナー@花山 2004.12.7


Sot

SOT観測波長

SOTセミナー@花山 2004.12.7


Sot

SOT観測量と基本スペック

SOTセミナー@花山 2004.12.7


Sot

Tunable Filter

半値幅~100mA

SOTセミナー@花山 2004.12.7


Partial polarizer lyot

Partial polarizer を用いたLyot ブロック

polarizer

calcite

Partial

polarizer

L

calcite

polarizer

2L

p (p=1で完全偏光板)を小さくするとサイドローブが抑制される。

Lと2L calcite の速い軸が90o違っていることがミソ。

間のpolarizer がなかったらL+2L でLのLyot element と等価、その電場がサイドローブの2L電場を打ち消す。(Title 1974, Sol.Phys., 38, 523.)


Sot

Schematics of the SOT polarimeter

Polarization modulator unit (PMU)

OTA

Collimator lens unit (CLU)

HDM

CTM-TM

Pupil

image

Astigmatism corrector lens (ACL)

M2

M1

NFI- Polarization analyzer

Mask wheel

Mech. shutter

Reimaging lens

Tunable filter

FG/NFI

Non-polarizing beam splitter

FG-CCD

Blocking filter wheel

SP

Slit scan mirror

Slit

SP- Polarization analyzer (beam splitter)

SP-CCD left/right


Sot

Appendix-6:

PMU waveplate

(2007.02.11 BFI retardation from D.Elmore)

5.35l @630nm

6.65l @517nm

The thermal constraint required the quartz and sapphire parts have a thickness ratio of 1.17. Our compromise: approximately maintain that ratio, while searching for dual-wavelength designs meeting the N ± 0.35 specification. We succeeded with 5.35 waves at 630 nm and 6.65 waves at 517 nm.

Crystal Retarder Design Strategies: A Tutorial

By Stephen J. Guimond, Meadowlark Optics and David F. Elmore, High Altitude Observatory, National Center for Atmospheric Research*

l d

388.350 9.3380

396.850 9.0947

430.500 8.2507

450.450 7.8240

517.200 6.6822

525.000 6.5720

555.050 6.1664

589.600 5.7624

630.200 5.3442

656.300 5.1095

668.400 5.0086


Sot

Polarization modulation and demodulation

V

U

Q

Waveplate angle [deg.]

PMU segment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + + + + + + + + + + + + + +  I’

+ - - + + - - + + - - + + - - +  Q’

+ + - - + + - - + + - - + + - -  U’

- - - - + + + + - - - - + + + +  V’

SP onboard demodulation


Sot

SOT modulation profiles from the measured PMU retardance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q

V

U


Detection limit of fg for the weak magnetic fields e 0 001

Detection limit of FG for the weak magnetic fields, e = 0.001

I’: line profiles convoluted by TF transmission curve

2nd moments of s and p-components


Sot

SOT polarimetric observables

SP (Spectropolarimeter)

FeI 6301 & 6302A full Stokes profiles

Dual beam

Continuous readout, 16 frames/rev.

Onboard demodulation/accumulation

Left/right sequential frame transfer

NFI (Narrowband Filter Imager) 0.1A Lyot filter

Shutterless mode

Continuous readout, 16frames/rev

Central portion w/ focal plane mask

Shutter mode

Use mechanical shutter

Expose entire CCD simultaneously

CCD

1

2

Example of shutter timing

Stokes-V obs.


Sot

SOT observables

FG:

- simple image

- Dopplergram (2 wavelengths)

- Stokes IV

- Stokes IQUV

- IVDG (2 wavelengths)

SP:

- normal mode (0.16” step, 4.8s/slit)

- fast mode (0.32” step, 3.2s/slit)

- dynamic mode (0.16” step, 1.6s/slit)

- deep mode (0.16” step, 9.6s/slit)


Sot

試験

  • 光学性能

  • 機械環境

  • 熱光学

  • 微小擾乱

  • 偏光特性

  • アウトガス


Sot

5. OTA flight model integration

clinometer

Vertical meter

Target mirror

Reference flat

Alignment cube

M2

Dummy OBU

OTA

Rotation mechanism

Interferometer

MiniFiz

M1

Six axis

stage

Telescope Up

Optical bench

  • OTA is integrated on a

    dedicated tower.

  • Interferometoric measurement

    is performed with f60cm

    reference flat at the top of tower.

  • OTA can be upside top and

    upside down to cancel gravity.


Sot

OTA光学測定

SOTセミナー@花山 2004.12.7


Sot

OTAの結像性能

OTA波面 重力変形による3角アス

上下反転により求めた無重力での WFE

20nm rms~ l/32 rms @633nm

||

Strehl ~ 0.96

軌道上温度変化により徐々に劣化する.

ミッション期間 において Strehl > 0.8

SOTセミナー@花山 2004.12.7


Sot

OTA Opto-thermal testing -- motivation

-1.7~ 25.0 C

Heater control

-21.5 ~ 4.4C

-27.8 ~ 4.6C

21.1 ~ 67.3 C

1.1 ~ 16.3 C

19.9 ~ 43.2 C

16.0 ~ 30.0 C

26.2 ~ 45.7 C

Heater control

Predicted OTA temperature in orbit

Large DT from the ground testing.

Large dT/dz.


Sot

OTA Opto-thermal testing -- configuration

Reference mirror

 OTA pointing ax.

Theodolite

 OTA center of FOV

Upper shroud

OTA

interferometer

Dummy OBU

Support

theodlite

 alignment cube.

Lower shroud

OTA alignment cube

flat mirror

shroud

Flat mirror reference

Tilt/shift stage

Autocollimator

 OTA pointing ax.

WFE of OTA is measured in a dedicated vacuum chamber. Two shrouds control the OTA temperature as it is in orbit.


Sot

・副鏡ヒータOn/Off でフォーカスがガンガン変わる

・排熱鏡スパイダーの温度でフォーカスが変わる

・望遠鏡が真空中で縮む

・スパイダーに張ったケーブル止めメタルでフォーカスが変わる

・主鏡面形状の温度による不連続変化


Sot

2.擾乱源

Solar-Bの中にある可動物

モメンタムホイール(MW x 4台)、

慣性系基準装置(ジャイロ:IRU-A, IRU-B)、

SOT: Fホイール3台、シャッター2個、

回転波長板1個、チュナブルフィルタ、

スリットスキャン、計8

XRT:Fホイール2台、シャッター1個

可視光シャッター1個、フォーカス、

計5

EIS: スリットタレット1台、シャッター1個

ミラーtilt粗微、計4

擾乱の周波数と大きさ(擾乱力は初期予想値)


Sot

「ひので」可視光望遠鏡の像安定要求 = 0.09”(3s) / 10sec

像の振動と点像の劣化

l=500nm

要求値

l=390nm

画像が1方向に正弦波的に振動したときの回折限界点像(上:500nm, 下:390nm)。


Sot

SOT system overview

CCD 50 x 50pix, 540Hz

像安定化装置(CT)が画像を安定化するのは15Hz 以下。


Sot

2006.10.31 CT servo-On, error signal/TM angle time profiles

Servo-off


2010 2 5

2010.2.5


Sot

theodolite

PSD

3.指向擾乱測定方法

レーザー光による測定

加速度センサーによる測定

望遠鏡鏡に加速度センサー取り付け

衛星バネ吊り

MTM

FPP光学センサーによるend-to-end

衛星床置き

FM

630nm tunable laser

dolly

長所:光学的にend-to-end な測定

短所:建物からのノイズが大きい

    軌道上と境界条件が異なる

長所:建物からのノイズが小さい

Free-Free境界条件の模擬ができる

短所:像擾乱の間接的な測定、M1//M2のみ


Sot

一噛み(2004.11)における2つの測定(フライト品)

衛星をバネで吊り上げ、望遠鏡の鏡に取り付けた加速度センサーで擾乱を測定する。

衛星を頑丈なタワーの中に置き、光を望遠鏡に入れて画像から擾乱を測定する。


Sot

Seq.4 吊り下げ

周波数方向に積分したモメンタムホイールによる指向誤差。

total

1800+100rpm or

2800+100rpm


Sot

最終フライトモデルによる擾乱測定結果

主な稼動メカニズムについて総合試験における3回の測定結果を並べて表示してある。要求レベル(0.03”rms)を超えているのはXRT-VLS(可視光シャッタ)のみである。XRT-VLSについては使用頻度を低く抑える(1時間に1回程度)ことで観測への影響を回避する。


Sot

S

Telescope, MT

Configuration of a spectro-polarimeter

can be modeled by a chain of Mueller matrices

S’

Polarization analyzer, MA

Spectrometer,

MF

Polarization

modulator, MP,k

detector

Feed optics, MB

S: incident stokes vector

S’k: Stokes vector at detector


Sot

Schematics of the SOT polarimeter

Polarization modulator unit (PMU)

OTA

Collimator lens unit (CLU)

HDM

CTM-TM

Pupil

image

Astigmatism corrector lens (ACL)

M2

M1

NFI- Polarization analyzer

Mask wheel

Mech. shutter

Reimaging lens

Tunable filter

FG/NFI

Non-polarizing beam splitter

FG-CCD

Blocking filter wheel

SP

Slit scan mirror

Slit

SP- Polarization analyzer (beam splitter)

SP-CCD left/right


Sot

Flow of the polarization measurement

‘Polarization measurement’ is achieved by measuring a number of I’ (first element of S’) at different Mp

I’k = mI,k I + mQ,k Q + mU,k U + mV,k V

k = 1,2,,,,N

modulation:

S’k = Mk S

I’ = W S

W: 4 x N matrix

polarization measurement

matrix

demodulation:obtain S from [I’]

S = D I’D : N x 4 demodulation matrix

for N > 4 D = ( Wt W)-1Wt--- least square solution of S

(ideal demodulation matrix)


Sot

Polarization modulation and demodulation

V

U

Q

Waveplate angle [deg.]

PMU segment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + + + + + + + + + + + + + +  I’

+ - - + + - - + + - - + + - - +  Q’

+ + - - + + - - + + - - + + - -  U’

- - - - + + + + - - - - + + + +  V’

SP onboard demodulation


Sot

Flow of the polarization measurement

SOT polarimeter

ST

Incident to

polarimeter

S

Incident

Stokes

vector

Telescope

ST = TS

Measurement

error: DS

S’ = XS

Polarization modulation

+ noise

I’ = W ST + e

S’

SOT

product

I’

modulated

intensity

S”

reduced

Stokes

vector

on-board demodulation

S’ = D I’

Ground

calibration

Xr-1S’ S”

X: Polarimeter response matrix (4x4)

X : true matrix

Xr: matrix determined by polarization calibration

Calibration error: DS” = S” – S = Xr-1 XS– S = (Xr-1 X– E) S

Statistical noise: dS” = Xr-1dS’ = Xr-1 e


Requirement on x

Requirement on X

  • Calibration error :DS= S” - S = { Xr-1X- E } S

  • Statistical noise : dS” = Xr-1dS’ = Xr-1e

  • e = (e , e, e, e) t

    • photometric noise

Requirement =DS < dS”

DX ≡ X- Xr : required accuracy for Xr


Requirement on x1

Requirement on X

DX S < e

Scale errors

[ Q,U,V ] / I = Pobs = (1 + ds) Preal + db

false signal error < e

scale error < a (allow ambiguity, cf. Stokes inversion)

Difference between p= 0% and p= 0.1% is important, but

difference between p=10% and p=10.1% is not important


Requirement on x2

Requirement on X

Scale errors

Let’s

Consider individual elements and allow scale error < a

then


Requirement on x3

Requirement on X

Scale error

Hinode, SOT

e = 0.001

a = 0.05

pl = 0.15 (max of Q,U)

pc = 0.2 (max of V)

Tolerance of DX (≡ O)

Goal of polarization calibration is to determine the polarimeter response matrix, X, with an accuracy defined by this tolerance matrix.


Sot

How to specify the required accuracy for polarization properties of individual optical elements1. Calculate polarimeter response matrix with and without an error (p) of polarization property of an element. 2. Compare DX ≡ X- Xrwith the tolerance matrix (O)3. If all elements of |DX| are smaller than the corresponding elements of O, then error p is acceptable, if one of them exceeds, then error p is not acceptable.

Polarization tolerance of optical element


Sot

Tolerance of optical element

Example: rotating waveplate

S

φ

ret: δ, angle: q

DX (Dq)

DX (Dd)

Tolerance of angle ~ 0.1deg. from Q-U crosstalk

Tolerance of ret.~ 3.7deg. from DV scale error


Sot

Tolerance of optical element

Polarimeter model

MT = E

MP = ideal rotating waveplate with d =126.7deg. 16 sampling

MB = MCTM-TM

MA = Mdiat with k=0.01

MF = Mdiat with k=0.001

* For errors whose axes are 45o to the PA-axis. Such error can occur for off-axis rays (~0.7deg.160” in FOV) in collimated beam entering on CTM-TM or BS.


Sot

Appendix-4:

CLU coatings

theoretical

polarization

Ag coating

theoretical

polarization

Calibration flow of SOT polarization

(2006.2.27)

CLU glass stress

measurement (in NAO)

CLU coat samples

measurement (in HAO)

check

Ag coat sample

measurement (in HAO)

check

45o Ag coating

theoretical

polarization

  • CLU Polarization Test

  • over field of view (in Japan)

  • over pupil plane

  • vs temperature

  • vs vibration/T-cycle

Calculate MTTM

over FOV

  • Calculate MCLU

  • over FOV

  • vs temperature

  • vs temperature gradients

Calculate MGT

over FOV

CTM-TM

(FM and flight Spare)

Polarization Test

(in Japan)

MTTM

over FOV

  • ACL Polarization Test

  • over field of view

  • vs temperature

Acceptance tests

of FPP optics

(in PaloAlto)

MGT

over FOV

MCLUover

FOV & Temp

Spare TTM

MTTM =const

MPMU, MFPP

over FOV

MACLover

FOV & Temp

MGT ~1

MCLU !=1

MeasureX with

PMU+TTM+FPP

(in PaloAlto)

Calculate X

over FOV

Obs. sequence

MACL ~1

(XMT)-1

calibration matrix

over field of view

MTover

FOV & (Temp)

X

over FOV

MT !=1

MGT = Gregorian Telescope Mueller Matrix

MCLU= CLU Mueller Matrix

MACL= Astigmatism Corrector Lens Mueller Matrix

MT = MACLMCLU MGT

X = PMU+TTM+FPP Polarimeter Response Matrix

Tuning after launch

using observed data

SOT polarization cal

@Suntest (in NAOJ)


Sot

Tolerance of optical element

Another example: CLU (Collimator Lens Unit)


Sot

Tolerance of optical element

Another example: CLU

CLU Mueller matrix image at different temperatures (example)

T=15C (from 20C)

T=30C (from 40C)

Rectangular shows the SOT field of view.

Interval of contours indicates the tolerance of each Mueller matrix element.


Sot

after 4th cold cycle

after vibration

after 2nd /3rd cold cycle

after 1st cold cycle

initial

Hysteresis of (3,4) element (=linear retardation) of the CLU Mueller matrix against temperature

torelance

CLU operational temperature was set as 25C < T <35C


2 polarization calibration test method

2. Polarization calibration test method

  • Test configuration

  • Entire SOT is located under a heliostat in a clean room.

  • Sunlight fed by the heliostat

  • Sheet polarizers (linear, L/R circular) on OTA

  • Room T=20C, CLU T>25C

Heliostat

mask

window

(I,Q,U,V)

Sheet polarizer

FPP


Sot

S/C +Y

S/C +X

Definition of SOT polarization coordinate

This definition is applied to the Stokes vectors obtained after application of

the X-matrix. Raw Stokes products of FPP are not consistent with this definition.

-Q

N

-U

-V

+U

-Q

-U

+U

+V

FPP

+Q

W

+Q

E

-V

+V

S

View from the top of SOT

View towards the sun

This definition is the same as that used in the analysis of the suntest data of 2004.8 and consistent with the ASP definition, ie. positive V at blue side of spectral line gives positive magnetic flux. This is also consistent with the definition of Stokes V: (right circ. – left circ.), where right circular polarization is positive when electric vector rotates clockwise looking at the source.


Sp fitting results for polari cal data

SP: Fitting results for polari. cal. data

SP: CCD center

Symbols: observed

Lines: fitting

SOT product I

U

Left CCD

Q

SOT product Q,U,V

V

Right CCD


Sp x matrix

SP X matrix

x matrices at scan center; CCD image

each element is scaled to median + tolerance, x00 (=1) is replaced by I-image

Median Mueller matrix

Left

1.0000 -0.2232 -0.0142 -0.0063

0.0028 -0.4819 -0.0642 0.0007

0.0022 -0.0529 0.4814 -0.0030

-0.0034 -0.0026 0.0043 0.5249

Right

1.0000 0.2077 0.0199 -0.0079

-0.0039 0.4886 0.0551 0.0005

-0.0021 0.0427 -0.4918 0.0034

0.0035 0.0013 -0.0044 -0.5304

The X matrix can be regarded as constant over the CCD.

spxmat_0506p.pro


Sot

x-matrix elements against the scan position

2005/06/13

Each point is the median in the CCD, scale = average + 0.01,

dotted horizontal lines show tolerances for each element

Asterisk: Left CCD

Diamond: right CCD

Include 5/14 data at scan center

The x matrix can be regarded as constant over the scan position

spxmat_0506p.pro


Sot

Polarization test summary, NFI T matrix


Sot

I

Q

U

V

SP product from Suntest in Aug.2004

FeI6302A

SOTセミナー@花山 2004.12.7


Sp polarization in continuum x 0 4

SP polarization in continuum (x=0-4)

min ~ -0.13%

Lites and Ichimoto, 2013, Sol.Phys.


Sot

Trend of SP Q/I in continuum

1st spectrum each day

Continuum in x=0-4, only CCD left

Averaged in slit center +/- 10

Dark is not subtracted from I

Slit-pos < -500

Slit-pos = -500 ~ -100

sp_longtrend.pro


Sot

BFI 光量の変遷


  • Login