slide1
Download
Skip this Video
Download Presentation
Introduction on J/ y suppression in heavy ion collision

Loading in 2 Seconds...

play fullscreen
1 / 28

Introduction on J/ y suppression in heavy ion collision - PowerPoint PPT Presentation


  • 142 Views
  • Uploaded on

Heavy quark system at finite temperature. Su Houng Lee Yonsei Univ., Korea. Introduction on J/ y suppression in heavy ion collision Progress in QCD calculations: LO and NLO Dissociation due to thermal gluons and quarks. Thank you to : Prof. D. P. Min,

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Introduction on J/ y suppression in heavy ion collision' - zoie


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Heavy quark system at finite temperature

Su Houng Lee

Yonsei Univ., Korea

  • Introduction on J/y suppression in heavy ion collision
  • Progress in QCD calculations: LO andNLO
  • Dissociation due to thermal gluons and quarks

Thank you to : Prof. D. P. Min,

former collaborators and students

present group: K. Ohnishi, K Morita, Y. Park, K. Kim, Y. Heo

slide2

대우재단 지원 핵물리학 심포지움

제 1회 :  1988년 8월 16일  설악산 관광호텔. 김정욱, 노만규, Yabu, Hwang, Kubo,  이현규, 전일동, 김병택, 김형배, 정운혁,  소광섭, 오성담 

제 2회 :  1989년 6월 26일 경주 노만규, Scoccola, Yabu, Cheng, Matsui, Kajino, Bonche, Nadeau, 민동필, 이현규, 박병윤, 이강석, 김종찬, 차동욱

제 3회 : 1990년 8월 8일 서울대학교 호암생활관 Yamazaki, Yazaki, Toki, 이수형, 박병윤, 심숙이, 이석준, 김병택

제 4회 : 1991년 7월 1일 서울 남원    Pandharipande, Giraud, Soyeur, Blaizot, Zahed, Hatsuda, Heinz

제 5회 : 1992년 6월 29일  서울대학교 호암 생활관    Kubodera, Laget, Hashimoto. 김정욱, 민동필  

제 6회 : 1993년 8월 20일 Gai, Hahn, Ji, Fried, Kang 민동필  

제 7회 : 1994년 6월 27일  서울대학교 호암 생활관  van Kolck, Hatsuda, Forte, Karliner, Kugo,  Oh, 이준규, 박병윤

제 8회 : 1995년 7월 17일  제주대학  Holstein, 노만규, 이수형, 이강석, 신상진

제 9회 : 1996년 8월 19일 전남대학교  Baym, Ko, Ji, 이철훈, 김충선, 강주환

제 10회 : 1997년 7월 17일 서울대학교 호암생활관   Brodsky, Carlson, Yamawaki, Burkardt, Mukhopadhyay, Zhitnisky, Kumano  최승호, 최호명,

제 11회 : 1998년 6월 23일  서울대학교 호암 생활관  Burgess, Berges, Robertson, Kubo, Birse, Gadiyak, Yang, 오용석, 홍순태, 김경식, 유순유, 전일동

제 12회 : 1999년 5월 26일 경주   Brodsky, Dalley, Miller Pauli, Kunin, Kochelev, Bakker, Burkardt, Heinzl, Hiller, McCartor, Nakawaki, Morara, Sugihara, Taniguchi 황대성, 현승준, Gubankova, Itoh, Kondo, Csaki, Sannino Carlson, Ji, Kniehi 최종범, 김흥종, 최승호  Beane, 노만규, Ramos, Janik 홍순태, Hayashigaki, Lenz, deForcrand,  Engelhardt 이수형, 송희성  Garvey, McKeown Peng, De Roeck 강주환

제 13회 : 2000년 6월 22일 부산대학교  Hatsuda, Nowak, 노만규, Zahed

2003년 11월 10일부터 14일까지 KIAS에서 "Compact Stars: Quest for New States of Dense Matter" Baym, Bulgac, Bombaci, Drake, Kaplan, Kulkarni, van Kerkwijk, Weber, Blaschke, Kajita, Kubodera, Page, Prakash, Reddy, Sata, Brown, Glendenning, Hatsuda, Hsu, Rajagopal, Sannino, Schaefer, Yamazaki 노만규 박병윤, 권영준, 홍덕기, 박태선, 김수봉, 이창환,

slide3

J/y suppression in Heavy Ion collision

  • 1. 1986: Matsui and Satz J/y suppression
  • Nuclear and comover suppression
  • SPS data

SPS data

4. Thermal enhancement

5. Lattice shows J/Y survives up to 1.6 Tc (Asakawa, Hatsuda .. )

6. Preliminary RHIC data

RHIC data

slide4

Relevant questions in J/y suppression

c

c

c

c

  • Ncc – 10 pair in Au+Au at RHIC
  • Ti > 300 MeV in RHICl
  • c+c  g g is very small
  • J/Y is formed at 1.6 Tc
  • Y’ is formed at Tc
  • Dissociation effects
  • Recombination effect

 need to know J/y – parton dissociation

slide5

J/y in Quark Gluon Plasma

Quenched lattice calculation by Asakawa and Hatsuda using MEM

T< 1.6 Tc

T> 1.6 Tc

J/y peak at 3.1 GeV

2003: Asakawa and Hatsuda claimed J/y will survive up to 1.6 Tc

slide6

Theoretical interpretations

These will be used throughout this work

But result is the same when <r2> is fixed

1. C. H. Lee, G. Brown, M. Rho… : Deeply bound states

2. C. Y. Wong… : Deby screened potential

0

e (GeV)

-0.8

Tc

1.6xTc

J/Y wave functions at finite T

J/Y Binding energy as a function T

slide8

Basics in Heavy Quark system

1. Heavy quark propagation

Perturbative treatment are possible

because

slide9

2. System with two heavy quarks

Perturbative treatment are possible when

slide11

Historical perspective on

Quarkonium Haron interaction in QCD

  • Peskin (79), Bhanot and Peskin (79)
  • a) From OPE
  • b) Binding energy= e0 >> L
  • Kharzeev and Satz (94,96) , Arleo et.al.(02,04)
  • a) Rederive, target mass correction
  • b) Application to J/y physics in HIC
slide12

Rederivation of Peskin formula

using Bethe-Salpeter equation (Lee,Oh 02)

Resum Bound state by

Bethe-Salpeter Equation

slide13

NR Power counting in Heavy bound state

1. Perturbative part

2. External interaction: OPE

slide14

Increasing T

LO Amplitude

slide15

Exp data

from pA

Not so large, however, LO QCD result is known to underestimate nucleon absorption cross section

Oh, Kim ,SHL 02

s1/2 (GeV)

slide18

q1

NLO Amplitude :

Collinear divergence when q1=0.

Cured by mass factroization

slide19

q1

q1

Integration of transverse momentum from zero to scale Q

Mass factorization

Gluons whose kcos q1 < Q scale, should be included in parton distribution function

slide21

Total cross section for Upsilon by nucleon: NLO vs LO

NLO/LO

Large higher order corrections

Even larger correction for charmonium

slide22

Thermal quark and gluon masses of 300 MeV will

Reduce the large correction

2. But at finite temperature, thermal masses will regulate the large correction

Lessons from NLO calculation

1. Large NLO correction near threshold, due to log terms

slide23

NLO

NLO F+q  c+c+q

slide25

Result and Summary

  • We showed that the process q(g)+J/Y c+c+q(g) gives large thermal width (1 GeV) for J/Y at 1.6 Tc

 Result depends of wave function or size <r2>

  • In heavy ion collision, as the initial QGP cools down, J/Y will start forming at 1.6 Tc. However, initially the dissociation from 3 body decay is very large.

 J/y dissociation will become smaller only near Tc

slide26

Fitted and predicted cc spectrum

Coulomb (OGE) + linear scalar conft. potential model

blue = expt, red = theory.

L*S OGE – L*S conft,

T OGE

as= 0.5538

b = 0.1422 [GeV2]

mc = 1.4834 [GeV]

s = 1.0222 [GeV]

S*S OGE

ad