Metabolisme mikrobia
This presentation is the property of its rightful owner.
Sponsored Links
1 / 76

Metabolisme Mikrobia PowerPoint PPT Presentation


  • 122 Views
  • Uploaded on
  • Presentation posted in: General

Metabolisme Mikrobia. Metabolisme Mikrobia Katabolisme & Energi Penghasilan PMF Penghasilan ATP Biooksidasi Respirasi (Aerobik) Respirasi Anaerobik Fermentasi Fotoautotrofi Fotosisntesis (oksigenik & anoksigenik) Reaksi cahaya Reaksi gelap (fiksasi CO2) Anabolisme: Biosistesis

Download Presentation

Metabolisme Mikrobia

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Metabolisme mikrobia

Metabolisme Mikrobia

Metabolisme Mikrobia

Katabolisme & Energi

Penghasilan PMF

Penghasilan ATP

Biooksidasi

Respirasi (Aerobik)

Respirasi Anaerobik

Fermentasi

Fotoautotrofi

Fotosisntesis (oksigenik & anoksigenik)

Reaksi cahaya

Reaksi gelap (fiksasi CO2)

Anabolisme: Biosistesis

Biosisntesis karbohidrat

Biosisntesis Lipid

Biosisntesis Protein

Biosistesis asam nukleat


1 2 metabolisme mikrobia

1.2. Metabolisme mikrobia

  • Metabolisme:

  • Katabolisme : pemecahan  energi

  • Anabolisme : sintesis ← energi

  • Metabolisme selular utama:

  • Glikolisis

  • Siklus Krebs

  • Rantai Respirasi


Mekanisme dasar metabolisme penghasilan energi

Mekanisme dasar Metabolisme & Penghasilan Energi

  • Energi: kemampuan melakukan kerja

  • Sumber energi: cahaya matahari & bahan org/anorg

  • Bentuk energi yang dipakai: ATP

  • Jasad hidup tunduk terhadap Hukum Termodinamika

  • Aliran Elektron dari Rekduktan ke Oksidan menghasilkan energi

  • Enzim: katalisator protein yang membuat sistem kehidupan berjalan dengan cara memacu kecepatan reaksi pada suhu rendah.

  • Enzim tidak mengubag “Keq” tetapi menurnkan energi aktivasi  mempercepat tercapainya keadaanequilibrium


Energi bebas reaksi biokimiawi

Energi Bebas & Reaksi Biokimiawi

  • Reaksi : A + B C + D

  • Keq = (C) (D)/(A) (B)

  • Keadaan Standard: (A); (B); (C) ; (D)  1M ;

    pH = 7; T = 25°C = (298°K)

  • Energi bebas Standard:

    • G°’= - 2,3RT log Keq.

  • Keadaan equilibrium: konsentrasi (A), (B), (C) dan (D) sudah tetap !

  • G = G°’ + 2,3RT log K

  • = -2,3 RT logKeq + 2,3RT log K

  • eg. ATP  ADP + Pi

  • G°’ = -7300 cal/mol


Energi bebas reaksi redoks

Energi bebas Reaksi Redoks

  • G = -nF. E

    n = 2 (sistem hayati)

    F = 23062 cal/V.mol (Konst. Faraday)

    eg. NADH2  O2 (E = 1,14 Volt)

    G = 52.000 cal/mol  4,3 ATP

    Fakta: NADH2 = 3 ATP

    Efisiensi = 75%


1 3 penghasilan pmf proton motive force

1.3. Penghasilan PMF (Proton Motive Force)

  • Pembentukan gradien proton/pH di antara dua sisi membran:

  • Membran sel bakteri, arkhaea

  • Membran dalam mitokondria

  • Membran tilakoid kloroplas


Generation of pmf

Generation of PMF


1 4 penghasilan energi atp

1.4. Penghasilan energi: ATP

  • Bentuk energi yang digunakan jasad hidup (ATP)

  • Pembentukan ATP ada 3 macam:

  • Fosforilasi tingkat substrat

  • Fosforilasi oksidatif – khemiosmosis

  • Fosforilasi fotosintetik


Molekul atp

Molekul ATP


Metabolisme mikrobia

ATP


Penghasilan energi biooksidasi

Penghasilan energi : Biooksidasi


A model redox reaction

A model : redox reaction...

  • Fe 2+ Fe3+ + e

  • Fe 2+ teroksidasi menjadi Fe3+ karena kehilangan elektron

  • Fe3+ tereduksi menjadiFe 2+ dengan menerima elektron


Koenzim nad fad

Koenzim: NAD & FAD

  • NAD: Nicotinamide Adenine Dinucleotide

    (NAD+ NADH2)

  • NADP: Nicotinamide Adenine Dinucleotide Phosphate

    (NADP+ NADPH2)

  • FAD: Flavin Adenine Dinucleotide

    (FAD+  FADH2)


Fad fadh 2

FAD+ FADH2


Fad fadh 21

FAD+ FADH2


Nad nadh 2

(NAD+ NADH2)


Penulisan singkat

Penulisan Singkat


Metabolisme mikrobia

NADP


Metabolisme mikrobia

NADP


Biooksidasi

Biooksidasi:

1. Respirasi aerobik  O2 (oksigen)

2. Respirasi anaerobik  anorganik

3. Fermentasi  organik

1. Respirasi Aerobik:

1.1. Glycolysis

1.2.Tricarboxylic Acid cycle (Krebs Cycle)

1.3. Oxidative phosphorylation


Reaksi biooksidasi reduksi

Reaksi biooksidasi-reduksi

Laktat + NAD+  Piruvat + NADH2

Bio-katalisator : Lactate Dehydrogenase


Metabolisme mikrobia

Energetics and carbon flow in (a) aerobic respiration, (b) anaerobic respiration, (c) chemolithotrophic metabolism, and (d) phototrophic; metabolism


1 respirasi aerobik

1. Respirasi aerobik


Embden meyerhof pathway

Embden-Meyerhof pathway

Glycolysis:

A common biochemical pathway for the fermentation of glucose is glycolysis, also named the Embden-Meyerhof pathway for its major discoverers. Can be divided into three major stages.


Stages i and ii preparatory and redox reactions

Stages I and II: Preparatory and Redox Reactions

Stage I : A series of preparatory rearrangements: reactions that do not involve oxidation-reduction and do not release energy but that lead to the production from glucose of two molecules of the key intermediate, glyceraldehyde 3-phosphate.

Stage II: Oxidation-reduction occurs, energy is conserved in the form of ATP, and two molecules of pyruvate are formed.


Metabolisme mikrobia

Stage III: Production of Fermentation Products

Stage III:

A second oxidation-reduction reaction occurs and fermentation products (for example, ethanol and CO2, or lactic acid) are formed.


1 1 glikolisis

1.1.Glikolisis


Fruktosa 1 6 bi phosphate

Fruktosa-1,6-bi- Phosphate


Perubahan piruvat asetil coa

Perubahan Piruvat Asetil-CoA

Pyruvate + Coenzyme A + NAD+

Acetyl-CoA + CO2 + NADH2

Coenzyme A


1 2 siklus krebs

1.2.Siklus Krebs


1 2 siklus krebs1

1.2. Siklus Krebs


1 2 siklus krebs2

1.2.Siklus Krebs


1 3 fosforilasi oksidatif rantai respirasi

1.3.Fosforilasi Oksidatif (Rantai Respirasi)

Akseptor elektron terakhir: O2


Cytochrome

Cytochrome


Fosforilasi oksidatif

Fosforilasi oksidatif


Generation of pmf teori khemiosmotik

Generation of PMF: teori khemiosmotik


Penghasilan atp respirasi aerobik

Penghasilan ATP: Respirasi Aerobik

Glikolisis (8 ATP)

Perubahan Piruvat  Asetil-CoA (6 ATP)

Siklus Krebs (24 ATP)

Fosforilasi oksidatif

38 ATP


Penghasilan atp

Penghasilan ATP

  • Glikolisis:

  • Penghasilan ATP:

  • 1,3 bifosfogliserat  3 –fosfoliserat : 2 ATP

  • PEP  Piruvat : 2 ATP

    --------------------------------------------------------------

  • Subtotal 4 ATP

    --------------------------------------------------------------

  • Pemakaian ATP:

  • Glukosa  Glukosa -6-P : 1 ATP

  • Fruktosa-6-P  Fruktosa-1,6-bi-P : 1 ATP

    --------------------------------------------------------------

  • Sub-total 2 ATP

    ---------------------------------------------------------------

  • Netto penghasilan 2 ATP

    ---------------------------------------------------------------

  • Penghasilan NADH2

  • Gliseraldehid-3-P  1,3-bi-P-Gliserat: 2 NADH


Piruvat asetil coa

Piruvat  Asetil-CoA

  • Piruvat  Asetil-CoA : 2 NADH2

    Piruvat + Co-A + NAD+

    Aseti-CoA + CO2 + NADH2


Siklus krebs

Siklus Krebs

  • Isositrat  α-Ketoglutarat : 2 NADH2

  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2

  • Suksinil-CoA  Suksinat : 2 ATP

  • Suksinat  Fumarat : 2 FADH2

  • Malat  Oksaloasetat : 2 NADH2

  • Netto:

  • 6 NADH2

  • 2 FADH2

  • 2 ATP


Fosforilasi oksidatif1

Fosforilasi Oksidatif

  • 1 NADH2 3 ATP

  • 1 FADH2  2 ATP

  • Glikolisis :

  • 2 NADH2  2 x 3 = 6 ATP

  • Piruvat  Asetil-CoA:

  • 2 NADH2  2 x 3 = 6 ATP

  • Siklus Krebs:

  • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP

  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP

  • Suksinat  Fumarat : 2 FADH2 = 4 ATP

  • Malat  Oksaloasetat : 2 NADH2 = 6 ATP

    --------------------------------------------------------------------

  • Sub-total = 22 ATP

    ---------------------------------------------------------------------

  • Total 34 ATP


Total penghasilan atp

Total Penghasilan ATP

  • Glikolisis :

  • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif)

  • 2 ATP = 2 ATP (Fosforilasi tkt substrat)

    ----------------------------------------------------------------------------------------------------------

  • Sub-total = 8 ATP

    ----------------------------------------------------------------------------------------------------------

  • Piruvat  Asetil-CoA:

  • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif)

    ------------------------------------------------------------------------------------------------------------

  • Siklus Krebs:

  • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)

  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)

  • Suksinat  Fumarat : 2 FADH2 = 4 ATP (Fosforilasi oksidatif)

  • Malat  Oksaloasetat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)

  • Suksinil-CoA  Suksinat : 2 ATP = 2 ATP (Fosforilasi tkt substrat)

    ------------------------------------------------------------------------------------------------------------

  • Sub-total = 24 ATP

    ------------------------------------------------------------------------------------------------------------

  • Total 38 ATP

    ------------------------------------------------------------------------------------------------------------

  • Bakteria & Archaea : 38 ATP

  • Mikrobia eukaryotik: 36 ATP (2 ATP digunakan untuk transfer 2 NADH2 dari sitoplasma ke dalam mitokondria)


Total energi respirasi aerobik

Total energi Respirasi Aerobik

Glikolisis : 2 NADH2 = 6 ATP

2 ATP = 2 ATP

Piruvat  Acetyl-CoA 2 NADH2 = 6 ATP

Siklus Krebs 6 NADH2 = 18 ATP

2 FADH2 = 4 ATP

2 ATP = 2 ATP

--------------------------------------------------------------

Total = 38 ATP

---------------------------------------------------------------


Respirasi anaerobik

Respirasi Anaerobik

  • Reduksi Nitrat  Nitrit NH3  N2 (Closteridium sp.)

  • Reduksi Sulfat  H2S (Desulforomonas sp.)

  • Redksi CO2  CH4 (Methanococcus sp. ; Archaea)


2 respirasi anaerobik reduksi nitrat

2. Respirasi Anaerobik: Reduksi Nitrat

Reduksi Nitrat: NO3 + e + H+ NO2 + H2O


Respirasi anaerobik reduksi sulfat

Respirasi anaerobik: Reduksi Sulfat

Siklus Sulfur di alam


Reduksi sulfat

Reduksi Sulfat

Bakteri Pereduksi Sulfat

Reaksi Reduksi Sulfat


Respirasi anerobik pembentukan ch4

Respirasi anerobik: Pembentukan CH4

Molekul methana


Pembentukan metana redusksi co2

Pembentukan metana: redusksi CO2


Methanogenesis

Methanogenesis


3 fermentasi

3. Fermentasi

3.1. Ethanolic fermentation

3.2. Propionic acid

3.3. Mixed acid

3.4. Butanediol

3.5. Butyric acid

3.6. Amino acid

3.7. Fermentation of acetate to methane

3.8. Methanogenesis


Lactic acid fermentation

Lactic acid fermentation


Fermentasi etanol

Fermentasi etanol


Fermentasi

Fermentasi


Katabolisme lipid trigliserida

Katabolisme Lipid: Trigliserida


Betha oxidation

Betha-oxidation


Protein catabolism

Protein catabolism


Nucleotide catabolism

Nucleotide catabolism


Katabolisme purin

Katabolisme Purin


Overview of metabolism

Overview of metabolism


5 photoautotrophy

5. Photoautotrophy

5.1. Absrorption of light energy

5.2. Oxygenic photosynthesis

53. Anoxygenic photosynthesis


Fotosintesis

Fotosintesis


Fotosintesis reaksi cahaya

Fotosintesis: Reaksi cahaya


Fotosintesis reaksi cahaya1

Fotosintesis: reaksi cahaya


Light reaction

Light Reaction


Cyclic photo phosphorilation animation

Cyclic Photo-phosphorilation: animation


Anoxygenic photosynthesis

Anoxygenic photosynthesis


  • Login