metabolisme mikrobia
Download
Skip this Video
Download Presentation
Metabolisme Mikrobia

Loading in 2 Seconds...

play fullscreen
1 / 76

Metabolisme Mikrobia - PowerPoint PPT Presentation


  • 186 Views
  • Uploaded on

Metabolisme Mikrobia. Metabolisme Mikrobia Katabolisme & Energi Penghasilan PMF Penghasilan ATP Biooksidasi Respirasi (Aerobik) Respirasi Anaerobik Fermentasi Fotoautotrofi Fotosisntesis (oksigenik & anoksigenik) Reaksi cahaya Reaksi gelap (fiksasi CO2) Anabolisme: Biosistesis

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Metabolisme Mikrobia' - zenaida-joyce


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
metabolisme mikrobia

Metabolisme Mikrobia

Metabolisme Mikrobia

Katabolisme & Energi

Penghasilan PMF

Penghasilan ATP

Biooksidasi

Respirasi (Aerobik)

Respirasi Anaerobik

Fermentasi

Fotoautotrofi

Fotosisntesis (oksigenik & anoksigenik)

Reaksi cahaya

Reaksi gelap (fiksasi CO2)

Anabolisme: Biosistesis

Biosisntesis karbohidrat

Biosisntesis Lipid

Biosisntesis Protein

Biosistesis asam nukleat

1 2 metabolisme mikrobia
1.2. Metabolisme mikrobia
  • Metabolisme:
  • Katabolisme : pemecahan  energi
  • Anabolisme : sintesis ← energi
  • Metabolisme selular utama:
  • Glikolisis
  • Siklus Krebs
  • Rantai Respirasi
mekanisme dasar metabolisme penghasilan energi
Mekanisme dasar Metabolisme & Penghasilan Energi
  • Energi: kemampuan melakukan kerja
  • Sumber energi: cahaya matahari & bahan org/anorg
  • Bentuk energi yang dipakai: ATP
  • Jasad hidup tunduk terhadap Hukum Termodinamika
  • Aliran Elektron dari Rekduktan ke Oksidan menghasilkan energi
  • Enzim: katalisator protein yang membuat sistem kehidupan berjalan dengan cara memacu kecepatan reaksi pada suhu rendah.
  • Enzim tidak mengubag “Keq” tetapi menurnkan energi aktivasi  mempercepat tercapainya keadaanequilibrium
energi bebas reaksi biokimiawi
Energi Bebas & Reaksi Biokimiawi
  • Reaksi : A + B C + D
  • Keq = (C) (D)/(A) (B)
  • Keadaan Standard: (A); (B); (C) ; (D)  1M ;

pH = 7; T = 25°C = (298°K)

  • Energi bebas Standard:
    • G°’= - 2,3RT log Keq.
  • Keadaan equilibrium: konsentrasi (A), (B), (C) dan (D) sudah tetap !
  • G = G°’ + 2,3RT log K
  • = -2,3 RT logKeq + 2,3RT log K
  • eg. ATP  ADP + Pi
  • G°’ = -7300 cal/mol
energi bebas reaksi redoks
Energi bebas Reaksi Redoks
  • G = -nF. E

n = 2 (sistem hayati)

F = 23062 cal/V.mol (Konst. Faraday)

eg. NADH2  O2 (E = 1,14 Volt)

G = 52.000 cal/mol  4,3 ATP

Fakta: NADH2 = 3 ATP

Efisiensi = 75%

1 3 penghasilan pmf proton motive force
1.3. Penghasilan PMF (Proton Motive Force)
  • Pembentukan gradien proton/pH di antara dua sisi membran:
  • Membran sel bakteri, arkhaea
  • Membran dalam mitokondria
  • Membran tilakoid kloroplas
1 4 penghasilan energi atp
1.4. Penghasilan energi: ATP
  • Bentuk energi yang digunakan jasad hidup (ATP)
  • Pembentukan ATP ada 3 macam:
  • Fosforilasi tingkat substrat
  • Fosforilasi oksidatif – khemiosmosis
  • Fosforilasi fotosintetik
a model redox reaction
A model : redox reaction...
  • Fe 2+ Fe3+ + e
  • Fe 2+ teroksidasi menjadi Fe3+ karena kehilangan elektron
  • Fe3+ tereduksi menjadiFe 2+ dengan menerima elektron
koenzim nad fad
Koenzim: NAD & FAD
  • NAD: Nicotinamide Adenine Dinucleotide

(NAD+ NADH2)

  • NADP: Nicotinamide Adenine Dinucleotide Phosphate

(NADP+ NADPH2)

  • FAD: Flavin Adenine Dinucleotide

(FAD+  FADH2)

biooksidasi
Biooksidasi:

1. Respirasi aerobik  O2 (oksigen)

2. Respirasi anaerobik  anorganik

3. Fermentasi  organik

1. Respirasi Aerobik:

1.1. Glycolysis

1.2.Tricarboxylic Acid cycle (Krebs Cycle)

1.3. Oxidative phosphorylation

reaksi biooksidasi reduksi
Reaksi biooksidasi-reduksi

Laktat + NAD+  Piruvat + NADH2

Bio-katalisator : Lactate Dehydrogenase

slide23
Energetics and carbon flow in (a) aerobic respiration, (b) anaerobic respiration, (c) chemolithotrophic metabolism, and (d) phototrophic; metabolism
embden meyerhof pathway
Embden-Meyerhof pathway

Glycolysis:

A common biochemical pathway for the fermentation of glucose is glycolysis, also named the Embden-Meyerhof pathway for its major discoverers. Can be divided into three major stages.

stages i and ii preparatory and redox reactions
Stages I and II: Preparatory and Redox Reactions

Stage I : A series of preparatory rearrangements: reactions that do not involve oxidation-reduction and do not release energy but that lead to the production from glucose of two molecules of the key intermediate, glyceraldehyde 3-phosphate.

Stage II: Oxidation-reduction occurs, energy is conserved in the form of ATP, and two molecules of pyruvate are formed.

slide27

Stage III: Production of Fermentation Products

Stage III:

A second oxidation-reduction reaction occurs and fermentation products (for example, ethanol and CO2, or lactic acid) are formed.

perubahan piruvat asetil coa
Perubahan Piruvat Asetil-CoA

Pyruvate + Coenzyme A + NAD+

Acetyl-CoA + CO2 + NADH2

Coenzyme A

1 3 fosforilasi oksidatif rantai respirasi
1.3.Fosforilasi Oksidatif (Rantai Respirasi)

Akseptor elektron terakhir: O2

penghasilan atp respirasi aerobik
Penghasilan ATP: Respirasi Aerobik

Glikolisis (8 ATP)

Perubahan Piruvat  Asetil-CoA (6 ATP)

Siklus Krebs (24 ATP)

Fosforilasi oksidatif

38 ATP

penghasilan atp
Penghasilan ATP
  • Glikolisis:
  • Penghasilan ATP:
  • 1,3 bifosfogliserat  3 –fosfoliserat : 2 ATP
  • PEP  Piruvat : 2 ATP

--------------------------------------------------------------

  • Subtotal 4 ATP

--------------------------------------------------------------

  • Pemakaian ATP:
  • Glukosa  Glukosa -6-P : 1 ATP
  • Fruktosa-6-P  Fruktosa-1,6-bi-P : 1 ATP

--------------------------------------------------------------

  • Sub-total 2 ATP

---------------------------------------------------------------

  • Netto penghasilan 2 ATP

---------------------------------------------------------------

  • Penghasilan NADH2
  • Gliseraldehid-3-P  1,3-bi-P-Gliserat: 2 NADH

piruvat asetil coa
Piruvat  Asetil-CoA
  • Piruvat  Asetil-CoA : 2 NADH2

Piruvat + Co-A + NAD+

Aseti-CoA + CO2 + NADH2

siklus krebs
Siklus Krebs
  • Isositrat  α-Ketoglutarat : 2 NADH2
  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2
  • Suksinil-CoA  Suksinat : 2 ATP
  • Suksinat  Fumarat : 2 FADH2
  • Malat  Oksaloasetat : 2 NADH2
  • Netto:
  • 6 NADH2
  • 2 FADH2
  • 2 ATP
fosforilasi oksidatif1
Fosforilasi Oksidatif
  • 1 NADH2 3 ATP
  • 1 FADH2  2 ATP
  • Glikolisis :
  • 2 NADH2  2 x 3 = 6 ATP
  • Piruvat  Asetil-CoA:
  • 2 NADH2  2 x 3 = 6 ATP
  • Siklus Krebs:
  • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP
  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP
  • Suksinat  Fumarat : 2 FADH2 = 4 ATP
  • Malat  Oksaloasetat : 2 NADH2 = 6 ATP

--------------------------------------------------------------------

  • Sub-total = 22 ATP

---------------------------------------------------------------------

  • Total 34 ATP
total penghasilan atp
Total Penghasilan ATP
  • Glikolisis :
  • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif)
  • 2 ATP = 2 ATP (Fosforilasi tkt substrat)

----------------------------------------------------------------------------------------------------------

  • Sub-total = 8 ATP

----------------------------------------------------------------------------------------------------------

  • Piruvat  Asetil-CoA:
  • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif)

------------------------------------------------------------------------------------------------------------

  • Siklus Krebs:
  • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)
  • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)
  • Suksinat  Fumarat : 2 FADH2 = 4 ATP (Fosforilasi oksidatif)
  • Malat  Oksaloasetat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif)
  • Suksinil-CoA  Suksinat : 2 ATP = 2 ATP (Fosforilasi tkt substrat)

------------------------------------------------------------------------------------------------------------

  • Sub-total = 24 ATP

------------------------------------------------------------------------------------------------------------

  • Total 38 ATP

------------------------------------------------------------------------------------------------------------

  • Bakteria & Archaea : 38 ATP
  • Mikrobia eukaryotik: 36 ATP (2 ATP digunakan untuk transfer 2 NADH2 dari sitoplasma ke dalam mitokondria)
total energi respirasi aerobik
Total energi Respirasi Aerobik

Glikolisis : 2 NADH2 = 6 ATP

2 ATP = 2 ATP

Piruvat  Acetyl-CoA 2 NADH2 = 6 ATP

Siklus Krebs 6 NADH2 = 18 ATP

2 FADH2 = 4 ATP

2 ATP = 2 ATP

--------------------------------------------------------------

Total = 38 ATP

---------------------------------------------------------------

respirasi anaerobik
Respirasi Anaerobik
  • Reduksi Nitrat  Nitrit NH3  N2 (Closteridium sp.)
  • Reduksi Sulfat  H2S (Desulforomonas sp.)
  • Redksi CO2  CH4 (Methanococcus sp. ; Archaea)
2 respirasi anaerobik reduksi nitrat
2. Respirasi Anaerobik: Reduksi Nitrat

Reduksi Nitrat: NO3 + e + H+ NO2 + H2O

reduksi sulfat
Reduksi Sulfat

Bakteri Pereduksi Sulfat

Reaksi Reduksi Sulfat

3 fermentasi
3. Fermentasi

3.1. Ethanolic fermentation

3.2. Propionic acid

3.3. Mixed acid

3.4. Butanediol

3.5. Butyric acid

3.6. Amino acid

3.7. Fermentation of acetate to methane

3.8. Methanogenesis

5 photoautotrophy
5. Photoautotrophy

5.1. Absrorption of light energy

5.2. Oxygenic photosynthesis

53. Anoxygenic photosynthesis

ad