1 / 181

# Statistics Chapter 9 - PowerPoint PPT Presentation

Statistics Chapter 9. Day 1. Unusual Episode. MS133 Final Exam Scores. 79 86 79 65 78 91 78 94 88 75 71 53 95 96 79 62 79 67 64 77 69 58 74 69 78 78 91 89 49 68 63 77 86 84 77. Line Plot or Dot Plot. Stem and Leaf. Stem and Leaf. Ordered Stem and Leaf.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Statistics Chapter 9' - zelda-pierce

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
StatisticsChapter 9

79 86 79 65 78

91 78 94 88 75

71 53 95 96 79

62 79 67 64 77

69 58 74 69 78

78 91 89 49 68

63 77 86 84 77

Line Plot or Dot Plot

• 5 A’s out of how many total grades? 35

• What percent of the class made an A?

5/35 ≈ 0.14 ≈14%

• What percent of the pie should represent the A’s? 14%

• How many degrees in the whole pie?

• 5 A’s out of how many total grades? 35

• What percent of the class made an A?

5/35 ≈ 0.14 ≈14%

• What percent of the pie should represent the A’s? 14%

• How many degrees in the whole pie? 360°

• 5 A’s out of how many total grades? 35

• What percent of the class made an A?

5/35 ≈ 0.14 ≈14%

• What percent of the pie should represent the A’s? 14%

• How many degrees in the whole pie? 360°

• 14% of 360° is how many degrees?

• 5 A’s out of how many total grades? 35

• What percent of the class made an A?

5/35 ≈ 0.14 ≈14%

• What percent of the pie should represent the A’s? 14%

• How many degrees in the whole pie? 360°

• 14% of 360° is how many degrees?

.14 x 360° ≈ 51°

• 8 D’s out of 35 grades

• 8/35 ≈ .23 ≈ 23% (to the nearest percent)

(keep the entire quotient in the calculator)

• x 360° ≈ 82°

• 3 F’s out of 35 grades total

• 3/35 ≈ .09 ≈ 9% (to the nearest percent)

(keep the entire quotient in the calculator)

• x 360° ≈ 31°

• Check the remaining angle to make sure it is 31°

• Gross income: \$10,895,000

• Labor: \$5,120,650

• Materials: \$4,031,150

• New Equipment: \$326,850

• Plant Maintenance: \$544,750

• Profit: \$871,600

• Labor: \$5,120,650 = 47% 169°

10,895,000

• Materials: \$4,031,150 = 37% 133°

10,895,000

• New Equipment: \$326,850 = 3% 11°

10,895,000

• Plant Maintenance: \$544,750 = 5% 18°

10,895,000

• Profit : \$871,600 = 8% 29°

10,895,000

• Table 9.2 Page 527

• Use your colored tiles to build a column 9 tiles high and another column 15 tiles high. Use a different color for each column.

• Use your colored tiles to build a column 9 tiles high and another column 15 tiles high. Use a different color for each column.

• Move the tiles one at a time from one column to another “evening out” to create 2 columns the same height.

• What is the new (average) height?

• Move the tiles back so that you have a column 9 tiles high and another 15 tiles high.

• Find another method to “even off” the columns?

• Use your colored tiles to build a column 19 tiles high and another column 11 tiles high. Use a different color for each column.

• “Even-off” the two columns using the most efficient method.

• What is the new (average) height?

• If we start with a column x tiles high and another y tiles high, describe how you could find the new (average) height?

• Let’s assume x is the larger number

• x – y(extra)x – y 2

• y + x – y

2

• x – y(extra)x – y 2

• y + x – y

2

2y + x – y

2 2

• x – y(extra)x – y 2

• y + x – y

2

2y + x – y

2 2

2y + x - y

2

• x – y(extra)x – y 2

• y + x – y

2

2y + x – y

2 2

2y + x - y

2

x + y 2

• Mean – “Evening-off”

• Median – “Middle”

• Most – “Most”

71 71 76 79 77 76 70 72 92 74 86 79 46 79 72 81 67 77 72 77 63 77 61 76

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,9246,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Mean = Sum of all grades

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,9246,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Mean = Sum of all grades

Mean = 1771

24

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,9246,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Mean = Sum of all grades

Mean = 1771

24

Class S46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

72 77 75 75 67 76 69 76 71 68 77 79 82 73 69 76 68 69 71 78 72 79 74 73 73

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,8267,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Mean =

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,8267,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Mean =

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,8267,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Mean =

Class T67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

74 79 86 84 40 82 40 61 40 49 70 85 49 40 45 91 74 96 81 85 86 75 89 85

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,9640,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mean =

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,9640,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mean =

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,9640,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mean =

Median –”Middle”40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Class S:

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Class T:

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Median40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R: 76

• Class S: 73

• Class T: 77

Mode – “Most”40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Class S:

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Class T:

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mode40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R: 77

• Class S: 69, 73, 76

• Class T: 40

Range - 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96A measure of dispersionGreatest - Least

Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Class S:

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Class T:

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Range40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R: 92 - 46 = 46

• Class S: 82 – 67 = 15

• Class T: 96 – 40 = 56

Class R40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Class SClass T

Mean = 73.873.6 70.3

Median = 76 73 77

Mode = 77 69,73,76 40

Range = 46 15 56

Weighted Mean Example 9.740,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Owner/Manager earned \$850,000

Assistant Manager earned \$48,000

16 employees \$27,000 each

3 secretaries \$18,000 each

Find the MEAN, MEDIAN, MODE

MEAN40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

MEAN40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

MEAN40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mean = 3(18,000)+16(27,000)+48,000+850,000 21

= 1384000 21

≈ \$65,905

MEDIAN40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

MEDIAN40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

MODE40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

RANGE40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Mean = \$65,90540,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Median = \$27,000

• Mode = \$27,000

• Range = \$832,000

quality points earned

hours attempted

Quality Points40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Every A gets 4 quality points per hour. For example, an A in a 3 hour class gets 4 quality points for each of the 3 hours, 4x3=12. An A in a 4 hour class gets 4 quality points for each of the 4 hours, 4X4=16 quality points.

Every B gets 3 quality points per hour.

Every C gets 2 quality points per hour.

Every D gets 1 quality points per hour.

No quality points for an F.

Sally Ann’s First semester GPA40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96to the nearest hundredth

Sally Ann’s Second Semester40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Sally Ann’s Second Semester GPA40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Sally Ann’s 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Cumulative GPA

Total quality points earned

Total hours attempted

Sally Ann’s New GPA40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96to the nearest hundredth

Day 340,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Class X40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

60, 60, 72, 72, 72, 78, 78, 82, 82, 82, 82, 85, 85, 90, 90

Find the mean, median, mode, and range.

Mean40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

60, 60, 72, 72, 72, 78, 78, 82, 82, 82, 82, 85, 85, 90, 90

Mean40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

60, 60, 72, 72, 72, 78, 78, 82, 82, 82, 82, 85, 85, 90, 90

Median – Mode – Range 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

60, 60, 72, 72, 72, 78, 78, 82, 82, 82, 82, 85, 85, 90, 90

• Mean = 7840,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Median = 82

• Mode = 82

• Range = 30

Standard Deviation40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

The standard deviation is a measure of dispersion. You can think of the standard deviation as the “average” amount each data is away from the mean. Some data are close, some are farther. The standard deviation gives you an average.

Find the standard deviation of class x.

Standard Deviation40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

60, 60, 72, 72, 72, 78, 78, 82, 82, 82, 82, 85, 85, 90, 90

Mean = 78

Standard Deviation of Class X40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Page 55840,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Example 9.11

Find the mean (to the nearest tenth):

35, 42, 61, 29, 39

Page 55840,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Example 9.11

Find the mean (to the nearest tenth): ≈41.2

Standard deviation (to the nearest tenth):

35, 42, 61, 29, 39

Page 55840,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Example 9.11

Find the mean (to the nearest tenth): ≈41.2

Standard deviation (to the nearest tenth): ≈ 10.8

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Graph of dispersion

• Data is divided into fourths

• The middle half of the data is in the box

• Outliers are not connected to the rest of the data but are indicted by an asterisk.

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =

Upper Quartile = Lower Quartile =

Outliers40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Any data more than 1 ½ boxes away from the box (middle half) is considered an outlier and will not be connected to the rest of the data.

• The size of the box is called the Inner Quartile Range (IQR) and is determined by finding the range of the middle half of the data.

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range =

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range = 7 IQR x 1.5 =

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range = 7 IQR x 1.5 = 10.5

Checkpoints for Outliers:

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range = 7 IQR x 1.5 = 10.5

Checkpoints for Outliers: 60.5, 88.5

Outliers =

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range = 7 IQR x 1.5 = 10.5

Checkpoints for Outliers: 60.5, 88.5

Outliers = 46, 92 Whisker Ends =

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class R:

46,61,63,67,70,71,71,72,72,72,74,76,76,76,77,77,77,77,79,79,79,81,86,92

Median =76

Upper Quartile = 78 Lower Quartile = 71

Inner Quartile Range = 7 IQR x 1.5 = 10.5

Checkpoints for Outliers: 60.5, 88.5

Outliers = 46, 92 Whisker Ends = 61, 86

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class S:

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Median =

UQ = LQ =

IQR = IQR x 1.5 =

Checkpoints for outliers:

Outliers = Whisker Ends =

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class S:

67,68,68,69,69,69,71,71,72,72,73,73,73,74,75,75,76,76,76,77,77,78,79,79,82

Median = 73

UQ = 76.5 LQ = 70

IQR = 6.5 IQR x 1.5 = 9.75

Checkpoints for outliers: 60.25, 86.25

Outliers = none Whisker Ends = 67, 82

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class T:

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Median =

UQ = LQ = IQR =

IQR x 1.5 =

Checkpoints for Outliers:

Outliers= Whisker Ends=

Box and Whisker Graph40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Class T:

40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Median = 77

UQ = 85 LQ = 49 IQR = 36

IQR x 1.5 = 54

Checkpoints for Outliers: -5, 139

Outliers = none Whisker Ends = 40, 96

Day 440,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Homework Questions40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96Page 561

Statistical Inference40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Population

• Sampling

• Random Sampling

• Page 576 #2, 4, 5, 17, 18, 19, 21, 22

Example 9.15, Page 56940,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Getting a random sampling

5,5,2,9,1,0,4,5,3,1,2,4,1,9,4,6,6,9,1,7

5,5,2,9,1,0,4,5,3,1,2,4,1,9,4,6,6,9,1,740,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

55 29 10 45 31 24 19 46 69 17

5,5,2,9,1,0,4,5,3,1,2,4,1,9,4,6,6,9,1,740,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

55 29 10 45 31 24 19 46 69 17

Sample

65 64 68 65 63

63 64 62 64 67

Find the mean of the sample40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

65 64 68 65 63

63 64 62 64 67

Mean = 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,9662 + 2(63) + 3(64) + 2(65) + 67 + 68

10

Sample Mean40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Mean = 62 + 2(63) + 3(64) + 2(65) + 67 + 68

10

Mean = 645

10

Mean = 64.5

Standard Deviation of the Sample40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

62 63 63 64 64 64 65 65 67 68

Standard Deviation of the Sample40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• 63 63 64 64 64 65 65 67 68

Standard Deviation40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Standard Deviation40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Standard Deviation40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Random Sample40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Mean = 64.5

• Standard deviation = 1.75

• Compare the sample to the mean and standard deviation of the entire population. (example 9.14)

• Compare our sample to the author’s sample. (example 9.14)

Beans or Fish40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Normal Distribution40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• The distribution of many populations form the shape of a “bell-shaped” curve and are said to be normally distributed.

• If a population is normally distributed, approximately 68% of the population lies within 1 standard deviation of the mean. About 95% within 2 standard deviations. About 99.7% within 3 standard deviations.

Normal Curve40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

68% of the data is within 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,961 standard deviation of the mean

95% of the data is within 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,962 standard deviations of the mean

99.7% of the data is within 40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,963 standard deviations of the mean

Normal Distribution40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Normal Distribution Example40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Suppose the 200 grades of a certain professor are normally distributed. The mean score is 74. The standard deviation is 4.3.

• What whole number grade constitutes an A, B, C, D and F?

• Approximately how many students will make each grade?

• A: 83 and above 200 students40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• B: 79 – 82

• C: 70 – 78

• D: 66 – 69

• F: 65 and below

• A: 83 and above 5 people40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• B: 79 – 82 27 people

• C: 70 – 78 136 people

• D: 66 – 69 27 people

• F: 65 and below 5 people

Normal Distribution40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• The graph of a normal distribution is symmetric about a vertical line drawn through the mean. So the mean is also the median.

• The highest point of the graph is the mean, so the mean is also the mode.

• The area under the entire curve is one.

Normal Distribution40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Standardized form of the normal distribution (z curve)40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

Z Curve40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• The scale on the horizontal axis now shows a z – Score.

Any normal distribution in standard form will have mean 0 and standard deviation1.

• 68% of the data will lie between -1 and 1.

• 95% of the data will lie between -2 and 2.

• 99.7% of the data will lie between -3 and 3.

Z- Scores40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• By using a z-Score, it is possible to tell if an observation is only fair, quite good, or rather poor.

• EXAMPLE: A z-Score of 2 on a national test would be considered quite good, since it is 2 standard deviations above the mean.

• This information is more useful than the raw score on the test.

Z- Scores40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• z – Score of a data is determined by subtracting the mean from the data and dividing the result by the standard deviation.

• z = x - µ

σ

62,62,63,64,64,64,64,66,66,6640,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Mean = 64.1

• Standard deviation ≈ 1.45

• Convert these data to a set of z-scores.

62,62,63,64,64,64,64,66,66,6640,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

62, 63, 64, 66

z-scores: -1.45, -0.76, -0.07, 1.31

Percentiles40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• The percentile tells us the percent of the data that is less than or equal to that data.

Percentile in a sample:40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,9662,62,63,64,64,64,64,66,66,66

• The percentile corresponding to 63 is the percent of the data less than or equal to 63.

• 3 data out of 10 data = .3 = 30% of the data is less than or equal to 63.

• For this sample, 63 is in the 30th percentile.

Percentile in a Population40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Remember that the area under the normal curve is one.

• The area above any interval under the curve is less than one which can be written as a decimal.

• Any decimal can be written as a percent by multiplying by 100 (which moves the decimal to the right 2 places).

• That number would tell us the percent of the population in that particular region.

Percentiles40,40,40,40,45,49,49,61,70,74,74,75,79,81,82,84,85,85,85,86,86,89,91,96

• Working through this process, we can find the percent of the data less than or equal to a particular data – the percentile.

• The z-score tells us where we are on the horizontal scale.

• Table 9.4 on pages 585 and 586 convert the z-score to a decimal representation of the area to the left of that data.

• By converting that number to a percent, we will have the percentile of that data.

Interval Example and the entire population.

• Show that 34% of a normally distributed population lies between the z scores of -0.44 and 0.44

Interval Example and the entire population.

• Show that 34% of a normally distributed population lies between the z scores of -0.44 and 0.44

• Table 9.4, page 585

• 33% to the left of -0.44

• 67% to the left of 0.44

• 67% - 33% = 34%

Day 5 and the entire population.

Homework Questions and the entire population.Page 576

Normal Distribution Lab and the entire population.

Day 6 and the entire population.

Lab Questions and the entire population.

Statistics Review and the entire population.

M&M Lab and the entire population.