1 / 18

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids. Chapter 12. 12.7 The compounds Br 2 and ICl have the same number of electrons, yet Br 2 melts at -7.2 o C, whereas ICl melts at 27.2 o C. Explain.

zahina
Download Presentation

Intermolecular Forces and Liquids and Solids

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intermolecular Forces and Liquids and Solids Chapter 12

  2. 12.7 The compounds Br2 and ICl have the same number of electrons, yet Br2 melts at -7.2oC, whereas ICl melts at 27.2oC. Explain. 12.9 The binary hydrogen compounds of the Group 4A elements are CH4 (-162oC), SiH4 (-112oC), GeH4 (-88oC), and SnH4 (-52oC). The temperature in parentheses are the corresponding boiling points. Explain the increase in boiling points from CH4 to SnH4. 12.10 List the types of intermolecular forces that exist in each of these species: (a) benzene (C6H6), (b) CH3Cl, (c) PF3, (d) NaCl, (e) CS2.

  3. Intermolecular Forces Dispersion Forces (London forces) Attractive forces that arise as a result of temporary dipoles induced in atoms or molecules Instantaneous-induced dipole The strength of dispersion forces tends to increase with increased molecular weight. Larger atoms have larger electron clouds, which are easier to polarize. The tendency of an electron cloud to distort in this way is called polarizability. 12.2

  4. Dispersion forces usually increase with molar mass. Intermolecular Forces Dispersion Forces Polarizability is the ease with which the electron distribution in the atom or molecule can be distorted. • Polarizability increases with: • greater number of electrons • more diffuse electron cloud 12.2

  5. O O S What type(s) of intermolecular forces exist between each of the following molecules? HBr HBr is a polar molecule: dipole-dipole forces. There are also dispersion forces between HBr molecules. CH4 CH4 is nonpolar: dispersion forces. SO2 SO2 is a polar molecule: dipole-dipole forces. There are also dispersion forces between SO2 molecules. 12.2

  6. Hydrogen bonding (H-bonding) A special kind of dipole-dipole interaction Intermolecular Forces • The strength of dispersion forces tends to increase with increaseing molecular weight. • Increased strength of dispersion forces usually leads to an increased boiling point (see blue curve) • Why do the binary hydrogen compounds of Group 6A not follow this trend?

  7. Hydrogen bonding (H-bonding) A special kind of dipole-dipole interaction Intermolecular Forces • Why do the binary hydrogen compounds of Group 6A not follow this trend? These molecules are polar so a dipole-dipole interaction is also operative. H2O, in particular is capable of a special dipole-dipole interaction that is unusually strong.

  8. or … … H H B A A A Intermolecular Forces Hydrogen Bond The hydrogen bond is a special dipole-dipole interaction between the hydrogen atom in a polar N-H, O-H, or F-H bond and an electronegative O, N, or F atom. A & B are N, O, or F 12.2

  9. Intermolecular Forces Hydrogen Bond The dipole-dipole interactions experienced when H is bonded to N, O, or F are unusually strong. H-bonding arises, in part, from the high electronegativity of nitrogen, oxygen, and fluorine. 12.2

  10. Intermolecular Forces Hydrogen Bond Fluorine is more electronegative than oxygen so it is reasonable to expect a stronger H-bond in liquid HF than in H2O. However, the boiling point of HF is lower than that of H2O, indicating a weaker H-bonding network in HF. Explain. Each H-F can participate in two H-bonds while each H2O can make four H-bonds. 12.2

  11. Summary of intermolecular forces Ion-induced dipole and dipole-induced dipole are additional types of dispersion forces.

  12. Intermolecular forces affect properties of liquids Surface tension is the amount of energy required to stretch or increase the surface of a liquid by a unit area. Strong intermolecular forces High surface tension 12.3

  13. Intermolecular forces affect properties of liquids Surface tension is the amount of energy required to stretch or increase the surface of a liquid by a unit area. Surface tension allows water glider walk on water. Surface tension results from the net inward force experienced by the molecules on the surface of a liquid which causes the surface to tighten like an elastic film. 12.3

  14. Adhesion Properties of Liquids Surface tension is responsible for capillary action. Cohesion is the intermolecular attraction between like molecules Adhesion is an attraction between unlike molecules Cohesion 12.3 water mercury

  15. Properties of Liquids Viscosity is a measure of a fluid’s resistance to flow. Strong intermolecular forces High viscosity 12.3

  16. Structure and properties of water • All life processes involve water • Excellent solvent for many ionic compounds as well as other substances capable of forming hydrogen bonds with water (i.e., DNA) • Moderator of climate owing to a high specific heat (absorbs heat in summer and gives off heat in winter with only small changes in the temperature of water) • Unique substance in that solid ice is less dense than liquid water (usually solids are more dense than liquids) 12.3

  17. Water is a Unique Substance Maximum Density 40C Thermal expansion H2O trapping in cavities Ice is less dense than water 12.3

  18. Solids Crystalline—high order (regular repeating pattern) Amorphous—low order

More Related