Life of
This presentation is the property of its rightful owner.
Sponsored Links
1 / 62

William Schulz Bechara PowerPoint PPT Presentation


  • 116 Views
  • Uploaded on
  • Presentation posted in: General

Life of Synthetic C O 2 , Environmental Impact, Chemical Synthesis and Industrial Applications. William Schulz Bechara. Charette Group - Literature Meeting May 2 nd , 2012. World's Top Market Value.

Download Presentation

William Schulz Bechara

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


William schulz bechara

Life of Synthetic CO2, Environmental Impact,

Chemical Synthesis and Industrial Applications

William Schulz Bechara

Charette Group - Literature Meeting

May 2nd, 2012


World s top market value

World's Top Market Value

The world still relies heavily today on fossil fuels to cover about 80% of its energy needs

1) Oil&Gas : 5

2) Telecommunication : 2

3) Eletronics : 4

4) Pharma : 3

5) Food : 2

6) Natural Resources

Exploration : 2

7) Bank : 3

8) Consumer goods &

Retailing : 3

9) Internet :1

3

1

1

7

5

3

3

1

6

2

1

9

8

1

7

8

2

4

8

3

4

7

5

4

6


Co 2 one of the largest waste product

CO2 – One of the Largest Waste Product

The world still relies heavily today on fossil fuels to cover about 80% of its energy needs

Electricity Without Carbon, Nature News Feature, 14 August 2008, 454.


Global warming

Global Warming?

Image from http://berkeleyearth.org/analysis - by Berkeley Earth Surface Temperature Institute. Retrieved 2012-05-02.


Global warming1

Global Warming?

Year

a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res.2001, 106, 2929. b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science2002, 295, 5563. c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, 455. d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG2002 1-42. 


Co 2 vs global warming

CO2 vs Global Warming?

Petit, J. R et al Nature 1999, 399, 429.


Co 2 and global warming

CO2 and Global Warming?

[...] records suggests a close link between CO2 and climate [...] The role and relative importance of CO2 in producing these climate changes remains unclear [...]

a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987,329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, 1394. f) Shakun, J. D. et al.Nature2012,484, 49.


Co 2 emissions going up

CO2 Emissions Going Up

Aresta, M. Carbon Dioxide as Chemical Feedstock2010 Wiley, Weinheim.


Co 2 emissions natural vs human anthropogenic co 2

CO2 Emissions : Natural vs Human (Anthropogenic CO2)

3.2 GtC/y in 1990

24 GtC/y in 2010

Gigatons of C/year 

Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm

c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.


Life of synthetic co 2

Life of Synthetic CO2

Image from http://www.theurbn.com/2011/06/capturing-time-bp-and-the-future by  Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved 2012-05-02.


Co 2 storage enhanced oil recovery

CO2 Storage / Enhanced Oil recovery

a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.


Co 2 storage enhanced oil recovery1

CO2 Storage / Enhanced Oil recovery

a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.


Co 2 emissions ccs project

CO2 Emissions – CCS Project

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering


Carbon capture and storage ccs project

Carbon Capture and Storage (CCS) Project

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering


Ccs project operational

CCS Project - Operational

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering


Co 2 scrubbing purification

CO2 Scrubbing (Purification)

O2, N2 and other gas

Amines

MgO

M-oxides

Cold

Hot

CO2, H2O, CO, O2, N2 and other gas

MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.


Recycling co 2

Recycling CO2

  •  Only 1% of the total CO2 on Earth is currently being used for chemical synthesis :

  • Chemical inertness,

  • CO2 capture and storage is expensive.

  • Recycling CO2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.


Other use of co 2

Other use of CO2

Aresta, M. Carbon Dioxide as Chemical Feedstock2010 Wiley, Weinheim.


Annual industrial use of co 2 in megatons

Annual industrial use of CO2 in megatons

3.2GtC/y in 1990

24GtC/y in 2010

Gigatons of C/year 

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.


Properties of co 2 as ligand

Properties of CO2 as Ligand

- Thermodynamically stable

- High energy substances required

Coordination Modes

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev.1996, 96, 2063.


Co 2 reduction

CO2 Reduction

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.


Co 2 reduction1

CO2 Reduction

“Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large-scale productions.”

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Gibson, D. H. Chem. Rev.1996, 96, 2063.


Reduction potential

Reduction Potential

a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev.2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Reduction of co 2 to co

Reduction of CO2 to CO

 Reverse water gas shift (RWGS) is the most promising process :

- Metal : Cu, Cu/SiO2, Cu–Ni/Al2O3, Cu/ZnO, Cu–Zn/Al2O3, Pd/Al2O3,

Pt/Al2O3, Pt/CeO2, Ni/CeO2, Rh/SiO2 (from Rh2(OAc)4)

- Temperature : >600 °C

- Cu-based systems remain mostly used.

- Often reduction to CH4 occurs since CO is a better ligand than CO2

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.


Reduction of co 2 to co1

Reduction of CO2 to CO

a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal.1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.


Reduction of co 2 to co mechanism with pt ceo 2

Reduction of CO2 to CO Mechanism with Pt/CeO2

a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem.B 2004, 108, 20240.

c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.


Photochemical reduction of co 2 to co

Photochemical Reduction of CO2 to CO

Takeda, H.; Ishitani, O. Coordination Chemistry Reviews2010, 254, 346


1 st photochemical reduction using ru complex

1st Photochemical Reduction Using Ru Complex

Recent Advances :

Reducing catalyst

Photocatalyst

Takeda, H.; Ishitani, O. Coordination Chemistry Reviews2010, 254, 346


Reduction of co 2 to ch 4 sabatier reaction

Reduction of CO2 to CH4 - Sabatier Reaction

 Important catalytic process for the production of syngas (CH4 and H2)

- Thermodynamically favoured.

- Metal = Ni, Ru, Rh, Pd, Pt.

- Oxide support : SiO2, TiO2, Al2O3, ZrO2, CeO2, MgO, ZrO2, NiO, NiAl2O2.

- Temperature : 400 - 700 °C

- Dispersion and surface of oxides is important.

- Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO2 at 76% conversion and a selectivity to CH4 (vs CO and MeOH) of 99%.

- Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce0.72Zr0.28O2 in pace colonization on Mars to convert the Martian CO2 into CH4 and H2O for fuel and astronaut life-support systems.

a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev.1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal.2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal.2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.


Potential bifunctional model for pd mgo catalysis

Potential Bifunctional Model for Pd/MgO Catalysis

a) Park, J. N.; McFarland, E. W. J. Catal.2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.


Synthesis of hydrocarbons

Synthesis of Hydrocarbons

- Gasification of coal, synthesis of syngas :

- Fischer-Tropsch process :

300,000 barrels of hydrocarbons/year

- Modification to CO2 :

  • - Metal : Cu, Fe, Co.

  • - Support : Al2O3, Mn, Zr, Zn.

  • Reaction are limited to small chains, H2O formed suppresses the

  • reaction and they are not cost effective in most cases.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703.

b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res.2001, 40, 1355.


Co 2 to meoh

CO2 to MeOH

- Metals : Ag, Au, Pd, Cu

- Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr.

- Temperature : 200-300 °C

- Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH4) at 260 °C

40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and

acetic acid.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev.2011, 40, 3703. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487. c)Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43.


Potential co 2 to meoh in industry

Potential CO2 to MeOH in Industry

82% of conversion

a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487.b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/0244208A1, 2007. c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13.

d)Image from http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc.,New energy and fuel news.


Synthesis of hcooh

Synthesis of HCOOH

Synthesis of HCOOH from CO2 is still limited.

Y

X

Y

X

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.


Synthesis of hcooh1

Synthesis of HCOOH

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.


Synthesis of hcooh2

Synthesis of HCOOH

Analysis by H NMR :

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.


Combustion heat of fuels in higher heating value hhv

Combustion Heat of Fuels in Higher Heating Value (HHV)

George A. Olah et al. :

[...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...].

a) Image from http://en.wikipedia.org/wiki/Heat_of_combustion – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem.2009, 74, 487.


Co 2 in organic chemistry

CO2 in Organic Chemistry

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Industrial synthesis of salicylic acid

Industrial Synthesis of Salicylic Acid

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Urea synthesis and derivatives

Urea Synthesis and Derivatives

Mesoporous silica

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Reaction of co 2 with organometallic reagents

Reaction of CO2 with Organometallic Reagents

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Dialkyl carbonate synthesis

Dialkyl Carbonate Synthesis

With Phosgene :

With CO2 :

Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Dimethyl carbonate synthesis

Dimethyl Carbonate Synthesis

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Dimethyl carbonate synthesis from epoxides

Dimethyl Carbonate Synthesis from Epoxides

a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71


Polymerization

Polymerization

2.0 MPa

Catalyst / cocatalyst / epichlorohydrin

1/1/1000 (molar ratio)

Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.


C c bond formation

C-C Bond Formation

Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.


Synthesis of a cyclic carbonate from an oxirane

Synthesis of a Cyclic Carbonate from an Oxirane

a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C.Energy Environ. Sci.2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.


Reaction of co 2 with organometallic reagents1

Reaction of CO2 with Organometallic Reagents

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Possible catalytic synthesis of acrylic acid

Possible Catalytic Synthesis of Acrylic Acid

“b-H elimination is not favored for steric reasons: the rigid five membered ring does not allow the b-H atoms to come close to the nickel center.”

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365. c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.


No catalysis possible

No Catalysis Possible

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Catalysis with mei

Catalysis with MeI

<56%

MeI decomposes the Ni complex

a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Ni catalyzed stereoselective ring closing carboxylation

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation

a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem.Soc.2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Ni catalyzed stereoselective ring closing carboxylation1

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation

Reductive

elimination

Bisallyl species

b-H elimination

L : Phosphine ligand

ZnEt2 : Transmetalation & reduction of Ni

a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem.Soc.2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Coupling of co 2 and alkynes

Coupling of CO2 and Alkynes

+

+

<10%

a) Inoue, Y.; Itoh, Y.; Hashimoto, H. Chem. Lett.1977, 85. b) Cokoja, M et al.. Angew. Chem. Int. Ed.2011, 50, 8510. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.2007, 107, 2365.


Ni catalyzed organozinc coupling with co 2

Ni- Catalyzed Organozinc Coupling with CO2

Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc.2008, 130, 7826.


Reaction mechanism

Reaction Mechanism

Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc.2008, 130, 7826.


Au catalyzed carboxylation of c h bonds

Au Catalyzed Carboxylation of C-H Bonds

Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc.2010, 132, 8858.


Au catalyzed carboxylation of c h bonds1

Au Catalyzed Carboxylation of C-H Bonds

Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc.2010, 132, 8858.


Au catalyzed carboxylation of c h bonds mechanism

Au Catalyzed Carboxylation of C-H Bonds Mechanism

Also done with Cu(IPr)Ot-Bu

a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc.2010, 132, 8858. b) Lckermann, L. Angew. Chem. Int. Ed. 2011, 50, 3842.


Biomass synthesis

Biomass Synthesis

Algae + CO2 + H2O + hn

=

O2 + Biomass

(Biofuel)

=

CO2

RWE's Algae Project, The Niederaussem Coal Innovation Centre, http://www.rwe.com/web/cms/en/213188/rwe-power-ag/innovations/coal-innovation-centre/rwes-algae-project/


Conclusion

Conclusion

  • A lot of work has been done for CO2 recycling and still a lot of work

  • will have to be done to lower CO2 emissions.

  • Elucidate mechanisms

  • Find more cost-effective methods

  • Incorporate renewable source of energy. ex. solar, etc.

  • Perform cyclic reactions where CO2 is formed and reduced in one reactor

  • providing clean energy.

Fuels

Renewable

Energy

Reduction Combustion Energy

  • Why not directly invest in renewable energy???


Consolidating phase for the pharma

Consolidating Phase for the Pharma

  • - AstraZeneca announced it is buying Ardea for $1 billion.

  • Watson Pharmaceuticals announced it is buying Actavis for $5.6 billion.

  • J&J stated being days away from closing on its $21 billion acquisition of Synthes.

  • Glaxo got rebuffed from Human Genome Sciences in a $2.6 billion bid.

  • Pfizer announced the $12 billion divestiture of its infant nutritional business to Nestlé.

  • Why?

  •  Blockbusters going off patent

  • Fewer drug approvals

  • Consequences :

  • - Buy companies with solid pipelines that will deliver growth

  • Layoff

  • More partnerships to save $ : ex. Merck : 75 partnerships, Lilly : > 100 partnerships, etc

  • One biotech CEO who had sold his first company for several hundred million dollars, who is now on his second, put it this way to me:

  • “Large pharma can’t develop drugs any more.  They are too slow.  They make decisions for political reasons.  Their hurdles are too high.  They have to keep buying companies like us just to stay innovative.”

What's Really Driving The Pharma M&A Frenzy, Forbes, http://www.forbes.com/sites/davidmaris/2012/04/27/pharma-feeding-frenzy/


  • Login