Pertemuan i konsep dasar riset operasional
This presentation is the property of its rightful owner.
Sponsored Links
1 / 36

Pertemuan I – Konsep Dasar Riset Operasional PowerPoint PPT Presentation


  • 203 Views
  • Uploaded on
  • Presentation posted in: General

Pertemuan I – Konsep Dasar Riset Operasional. Riset Operasinal – 4010102053-Dewiyani. Agenda. Introduction Goals, Objectives and Expected outcome What is management science? What is Analytics, how does it relate to OR/MS? Remarks. Who am I?. Dr. M.J. Dewiyani Sunarto

Download Presentation

Pertemuan I – Konsep Dasar Riset Operasional

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Pertemuan i konsep dasar riset operasional

Pertemuan I – KonsepDasarRisetOperasional

RisetOperasinal – 4010102053-Dewiyani


Agenda

Agenda

Introduction

Goals, Objectives and Expected outcome

What is management science?

What is Analytics, how does it relate to OR/MS?

Remarks


Who am i

Who am I?

  • Dr. M.J.DewiyaniSunarto

  • [email protected]

  • 08563062843

  • DosentetapdiSTMIKSTIKOM Surabaya

  • RuangProdi S1 SistemInformasi – Lantai 2 GedungMerah

  • Senin – Jumat : 07.30 – 16.30


Agenda1

Agenda

Introduction

Goals, Objectives and Expected outcome

What is management science?

What is Analytics, how does it relate to OR/MS?

Remarks


Goals objectives and expected outcome

Goals, objectives and expected outcome

Capaian Pembelajaran : Setelah mengikuti mata kuliah riset operasional, mahasiswa dapat menganalisis persoalan optimasi dan pembentukan model dalam proses pengambilan keputusan dengan perhitungan manual maupun hasil output komputer


Materi

Materi

  • Dalam Mata kuliah ini mahasiswa akan mempelajari pokok bahasan- pokok bahasan sebagi berikut:

    • Konsep dasar riset operasional dan pembentukan model.

    • Pengantar program linier dan solusi grafik,

    • Solusi metode simpleks, Analisis post optimal,

    • Model transportasi dan penugasan,

    • Model arus jaringan,

    • Analytical hierarchy process (AHP),

    • Program dinamik,

    • Analisis markov,

    • Diagram pohon keputusan dan teori permainan.


Kesepakatan kita bersama

Kesepakatankitabersama……

  • Apa yang sayaharapkandariAnda ?

    • Datangtepatwaktu – keterlambatan 0 menit

    • Persiapkandirisebelumkuliah – bacaRancanganPelaksanaanPembelajaran (RPP).

    • MembacareferensidanBerlatihsoalsebanyakmungkin

    • Kumpulkantugastepatwaktu.

    • Komposisinilai : 30% UTS, 30% UAS, 40% Tugas Nilai Minimal Kelulusan : B

    • 3 sksberartidalamseminggu :

      • 3 x 50 menitpersiapan

      • 3 x 50 menittatapmuka

      • 3 x 50 menitevaluasi


Kesepakatan kita bersama1

Kesepakatankitabersama……

  • Apa yang sayajanjikankepadaAnda?

    • Datangtepatwaktu – keterlambatan 0 menit

    • MenfasilitasibelajarAnda

    • Mengembalikanpekerjaan/tugasAndadalamwaktumaksimal 2 minggu

    • 3 sksberartidalamseminggu :

      • 3 x 50 menitpersiapan

      • 3 x 50 menittatapmuka

      • 3 x 50 menitevaluasi


Don t be shy

Don’t be shy!

J.E. Stice, Engineering Education, pp. 291-296, 1987


Review syllabus

Review Syllabus


Agenda2

Agenda

Introduction

Goals, Objectives and Expected outcome

What is management science?

What is Analytics, how does it relate to OR/MS?

Remarks


Sejarah

SEJARAH

  • PERANG DUNIA II --> ANGKATAN PERANG INGGRIS

  • TUJUAN : menentukan penggunaan sumber kemiliteran terbatas, dg cara paling efektif

  • Ditiru oleh Angkatan Perang Amerika

    ==> PENERAPAN ke MANAJEMEN BISNIS


Riset operasional

RISET OPERASIONAL

  • Masalah : alokasi optimal sumberdaya yang terbatas, dalamusahamencapaihasilterbaik.

  • Optimal berarti : memaksimalkanlaba, ataumeminimalkanbiaya.


Definisi

DEFINISI

  • Riset Operasional merupakan suatu pendekatan ilmiah dalam pengambilan keputusan yang digunakan untuk mencari model terbaik dalam menjalankan suatu perusahaan guna mencapai tujuan, dalam kondisi ketersediaan sumber daya yang terbatas


Pertemuan i konsep dasar riset operasional

  • Digunakan model matematis ( karena pendekatan ilmiah), berupa persamaan atau ketidaksamaan.

  • 2 macam model matematis:

    - deterministik : bersifat pasti, semua komponen diketahui dengan pasti.

    - probabilistik : tidak pasti, lebih realistik, tapi sulit dianalisa


Home runs in management science continued

Home Runs in Management Science continued...

  • Sears, Roebuck & Company

    • One of the largest merchandise & service retailers in the world

    • Maintains 13,500 service and delivery vehicles, making approximately 20 million service and delivery calls annually

    • Combined OR techniques with GIS for more efficient service and delivery routes

    • Benefits:

      • Over $9 million in one time savings

      • Over $42 million in annual savings

OREM, Spring 2014. Dr. Gigi Yuen-Reed


Home runs in management science continued1

Home Runs in Management Science continued...

  • Grantham, May, Van Otterloo and Co.

    • Boston-based investment firm with over $26 billion in assets

    • Developed a model to design portfolios that achieve investment objectives while minimizing custodial and transaction fees

    • Benefits:

      • 40-60% reduction in the average number of stocks held

      • Number of trades reduced by 75-80%

      • Reduced annual trading costs by $4 million

OREM, Spring 2014. Dr. Gigi Yuen-Reed


Business use of management science

Business Use of Management Science

  • Some application areas:

    • Project planning

    • Capital budgeting

    • Inventory analysis

    • Production planning

    • Scheduling

  • Interfaces - Applications journal published by Institute for Operations Research and Management Sciences

OREM, Spring 2014. Dr. Gigi Yuen-Reed


Pertemuan i konsep dasar riset operasional

The Management Science Process

Figure 1.1

The Management Science Process

OREM, Spring 2014. Dr. Gigi Yuen-Reed


Apakah itu model

Apakahitu Model ?

  • Model adalahbentuksederhanadarisuatumasalah.

  • Biasanyaditulisdalampersamaanmatematika model matematika

  • Disebutsebagaiformulasi model


Example of a mathematical model

Example of a Mathematical Model

Profit = Revenue - Expenses

or

Profit = f(Revenue, Expenses)

or

Y = f(X1, X2)


A generic mathematical model

A Generic Mathematical Model

Y = f(X1, X2,…,Xn)

Where:

Y = dependent variable (a bottom line performance measure)

Xi = independent variables (inputs having an impact on Y)

f(.) = function defining the relationship between the Xi and Y


Pertemuan i konsep dasar riset operasional

Model Building Illustration:

Break-Even Analysis

Example:Western Clothing Company

Fixed Costs: cf = $10000

Variable Costs: cv = $8 per pair

Price : p = $23 per pair

The Break-Even Point is:

FC + VC = p. v

10.000 + (8.v) = 23 v

10.000 = 15 v

v = (10,000)/(15)

= 666.7 pairs


Pertemuan i konsep dasar riset operasional

Model Building Illustration:

Break-Even Analysis

Graphical Solution

Figure 1.2


Pertemuan i konsep dasar riset operasional

Model Building Illustration:

Break-Even Analysis

What if unit price increase from $23 to $30?

Figure 1.3


Things to consider

Things to Consider

Above and Beyond

OREM, Spring 2014. Dr. Gigi Yuen-Reed

  • Break-even is good, but how do we optimize profit?

    • How many pairs of jeans can we realistically sell given market condition?

    • Do we have sufficient resources to produce the desired quantity of products?

    • What is the impact of price elasticity?


Formulasi model program linear

Formulasi model: PROGRAM LINEAR

  • Merupakan fungsi Linear

  • Mempunyai target memaksimumkan atau meminimumkan suatu nilai

  • Teknik Penyelesaian yang digunakan:

    - dua variabel : metoda grafik

    lebih dari dua variabel : metoda Simpleks

  • Model LP Secara Umum :

    - Variabel

    - Fungsi Tujuan

    - Fungsi Pembatas


Tahapan dalam program linear

TAHAPANDALAMPROGRAM LINEAR

1.Merumuskanmasalah

2. Membuat model matematika

Komponen :

- variabelkeputusan

- fungsitujuan

- fungsipembatas

3. Menentukansuatupenyelesaian, agar diperoleh optimal solution

4. Pengujian model dansolusi

5. PembuatanImplementasi


Linearitas

Linearitas

  • Suatumesinmemerlukanwaktu 10 menituntukmemprosesproduk A dan 20 menituntukmemprosesproduk B.

    Jam operasimesin : ………………

  • Biayaangkut per unit produkdaripabrikkedaerahpemasaranA,Bdan C adalahRp 2,- , Rp 4,- danRp 6,-.

    Biayaangkut total : ……………


General form of a linear programming lp problem

General Form of a Linear Programming (LP) Problem

MAX (or MIN):c1X1 + c2X2 + … + cnXn

Subject to:a11X1 + a12X2 + … + a1nXn <= b1

:

ak1X1 + ak2X2 + … + aknXn >=bk

:

am1X1 + am2X2 + … + amnXn = bm


An example lp problem

Aqua-SpaHydro-Lux

Pumps11

Labor 9 hours6 hours

Tubing12 feet16 feet

Unit Profit$350$300

An Example LP Problem

Blue Ridge Hot Tubs produces two types of hot tubs: Aqua-Spas & Hydro-Luxes.

There are 200 pumps, 1566 hours of labor, and 2880 feet of tubing available.


5 steps in formulating lp models

5 Steps In Formulating LP Models:

1. Understand the problem.

2. Identify the decision variables.

X1=number of Aqua-Spas to produce

X2=number of Hydro-Luxes to produce

3.State the objective function as a linear combination of the decision variables.

MAX: 350X1 + 300X2


5 steps in formulating lp models continued

5 Steps In Formulating LP Models(continued)

4. State the constraints as linear combinations of the decision variables.

1X1 + 1X2 <= 200} pumps

9X1 + 6X2 <= 1566} labor

12X1 + 16X2 <= 2880} tubing

5. Identify any upper or lower bounds on the decision variables.

X1 >= 0

X2 >= 0


Summary of the lp model for blue ridge hot tubs

Summary of the LP Model for Blue Ridge Hot Tubs

MAX: 350X1 + 300X2

S.T.:1X1 + 1X2 <= 200

9X1 + 6X2 <= 1566

12X1 + 16X2 <= 2880

X1 >= 0

X2 >= 0


Feasible infeasible solutions

Feasible/Infeasible Solutions

  • A feasible solution does not violate any of the constraints:

  • An infeasible solution violates at least one of the constraints:


Summary

Summary

  • LP

  • LP Components

  • Steps to formulate an LP


  • Login