1 / 80

Effect of disorder on the fracture of materials

Effect of disorder on the fracture of materials. Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France. MATGEN IV, Lerici , Italy September 19-23, 2011. Irradiation defects in solids. Good compromise of mechanical properties. Other « defects ». Frenkel.

Download Presentation

Effect of disorder on the fracture of materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Effect of disorder on thefracture of materials • Elisabeth Bouchaud • Solid State Physics Division (SPEC) • CEA-Saclay, France MATGEN IV, Lerici, Italy September 19-23, 2011

  2. Irradiation defects in solids Good compromise of mechanicalproperties Other « defects » Frenkel Vacancy Interstitial Tough ceramics (Berkeley) Toughened Polymer (ESPCI) Fiber composite (Columbia) Metallicalloys (ONERA)

  3. s s Include the effect of heterogeneities in a statistical description How to estimate the properties of a composite? EcompositeF E +F E • Rare eventsstatistics • Strong stress gradients • in the vicinity of a crack tip sr= F sr+F sr

  4. OUTLINE Elements of LEFM Effect of disorder on the morphology and dynamics of the crack front Experimental observations Discussion

  5. s a Dx s=E a s 1- Elements of LEFM A crude estimate of the strength to failure sf ≈ E Failure : Dx≈a sf ≈ E/100 Presence of flaws!

  6. s A 2b 2a s 1- Elements of LEFM Stress concentration at a crack tip (Inglis 1913) sA > s: stress concentration

  7. s s (r) r s 1- Elements of LEFM Infinitely sharp tip: Irwin (1950) A K=stress intensity factor Strong stress gradient Sample geometry

  8. 1- Elements of LEFM Mode II In-plane, shear, sliding Mode III Out-of-plane, shear Tearing Mode I Tension, opening KI KII KIII Mixed mode, to leading order:

  9. s B 2a 1- Elements of LEFM Griffith’s energy balance criterion Elasticenergy Surface energy Total change in potentialenergy: Propagation at constant applied load:

  10. 1- Elements of LEFM Happens for a critical load: Or for a critical stress intensity factor: Fracture toughness Energy release rate

  11. q q KII=0 1- Elements of LEFM Crack path: principle of local symmetry

  12. 1- Elements of LEFM Onset of fracture: Beyondthreshold: PMMA Glass (E. Sharon & J. Fineberg, Nature 99)

  13. 2- Effect of disorder… Heterogeneities Rough crack front UnevenSIFs Heterogeneouspath (JP Bouchaud & al, 93 J. Schmittbuhl & al, 95 D. Bonamy & al, 06) Steady crack morphology? Dynamics?

  14. 2- Effect of disorder… 3D 2D

  15. 2- Effect of disorder… Stabilizingterm (Meade & Keer 84, Gao & Rice 89)

  16. 2- Effect of disorder… M(f(z),z)

  17. 2- Effect of disorder… F Edwards-Wilkinson model Non local elasticrestoring force

  18. 2- Effect of disorder… V • Depinning transition: • orderparameterV • control parameter KI0  Stable (KI0-KIc) ~  KI0 KIc Propagating (KI0-KIc)q

  19. 2- Effect of disorder… Pulling force f0 Obstacle force F Obstacle force V (F-Fm) f f=0 Depinning: line in a periodicpotential F x T? f(x=0,t=0)=0

  20. x Df(Dz) z z+Dz t+Dt t z2D=0.39 (A. Rosso & W. Krauth & O. Duemmer)

  21. 2- Effect of disorder… Z f(z) In plane projection of crack front X y z Out of plane projection of crack front h(z) (Movchan, Gao & Willis 98)

  22. 2- Effect of disorder…  ≈ 0.4  ≈ 0.5 k≈ / ~ 0.8 Crack trajectory Local symmetryprinciple KII=0 (Bonamy et al, 06)

  23. 3- Experiments 3D Out-of-plane Projection on the yz plane In-plane Projection on the xz plane f(z)

  24. 3- Experiments 3D x P.Daguier et al. (95) z2D ≈ 0.55-06

  25. 3- Experiments 3D Profiles perpendicular to the direction of crack propagation Aluminium alloy z=0.77 3nm0.1mm (Dz) (µm) Zmax(Dz) (µm) z= 0.78 from 5nm to 0.5mm z = 0.77 Dz (µm) Dz Profiles perpendicular to the direction of crack propagation (M. Hinojosa et al., 98)

  26. 3- Experiments 3D Quasi-crystal (STM) Aluminum alloy (SEM+Stereo) A + B + Δz Δx z/ x1/k x Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2 y h/x h (Å) z/ x1/k z  = 0.75  = 0.6 k= / ~ 1.2 h/x Mortar h/x z/ x1/k

  27. 3- Experiments 3D log(P(f)) dzzP(Dh) z≈0.47 Dh/(dz)z log(f) Exceptions… Sandstone fracture surfaces z≈0.4 (Ponson at al. 07) (Boffa et al. 99)

  28. 3- Experiments 3D Exceptions… « Model » material : sintered glass beads (Ponson et al, 06) Porosity 3 to 25% Grain size 50 to 200 mm Vitreous grain boundaries

  29. 3- Experiments 3D 1/k (Ponson et al. 06) Roughness at scales > Grain size 2 independent exponents ζ=0.4± 0.05 β=0.5± 0.05 k=ζ/β=0.8 ±0.05 + « Universal » structure function

  30. 3- Experiments 3D z=0.4 =0.4 z=0.79 =0.75 Rc(x1) Rc(x2) Rc(x1) Mortarspecimens x x1 X2 Rc(x2)>Rc(X1) Rc increases with time S. Morel & al, PRE 2008

  31. 3- Experiments: interfacial fracture (K.J. Måløy & al)

  32. 3- Experiments: interfacial fracture x(mm) z(mm) (S. Santucci et al, EPL 2010) z2D=0.63 z2D=0.37 log(Dh(Dz)/d0); d0=1µm F  200µm 100µm log(Dz/d0); d0=1µm

  33. 3- Experiments: interfacial fracture x x x (K.J. Måløy et al. 06) Front location Waiting time matrix: t=0 W(z,x)=0 t>0 Wt+dt(z,x)=1+Wt(z,x) if front in (z,x) Spatial distribution of clusters (white) v(z,x)>10 <v> <v>=28.1µm/s; a=3.5µm

  34. Slope -1.6 3- Experiments: interfacial fracture 0.39µm/s≤<v>≤40µm/s 1.7µm ≤a≤10µm C=3 (K.J. Måløy et al. 06) (D. Bonamy & al., 08) Cluster size distribution

  35. 3- Experiments: interfacial fracture (S. Santucci& al., 08)

  36. Transmission of stresses through undamaged material:long range interactions (1/r2)  very rigid line Undamaged material Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions low rigidity 4- Discussion • Disorder roughnening • Elasticrestoring forces  rigidity

  37. X Z 4- Discussion Gradient percolation (A. Hansen & J. Schmittbuhl, 03) Damage RFM  gradient percolation process z3D=b3D= 2n/(1+2n)=4/5 (nRFM/3D=2)

  38. Rc 4- Discussion ? r « Rc r » Rc Damage zone scale Large scales: elastic domain z=0.4, b=0.5 z=0.75, b=0.6

  39. 4- Discussion Fracture of an elasticsolidis a dynamic phase transition 3 regions on a fracture surface: 1 Linearelasticregionz=0.4 b=0.5/log 2Intermediateregion: within the FPZ Damage = « perturbation » of the front (screening) z=0.8 b=0.6  direction of crack propagation 3 Cavityscale: isotropicregion • Size of the FPZ • Direction of crack propagation within FPZ • Damage spreading reconstruction 3 2 1

  40. Questions • A model in the PFZ? • How to reconcile line model and percolation gradient model ? • Size of FPZ? Reliablemeasurements? • Direct measurement of the disorder • correlator • Dynamicsof crack propagation in 3D? • Radiation damage? • Breaking liquids…

  41. Thankyou!

  42. PMMA b≈0.6 Dhk(Dx)/RkG L≈ 50µm PMMA Rk(Dx)/RkG Dx/d0 Log10(Dx/d0) 3.2- Interfacial fracture (S. Santucci et al., 07) 3- Statisticalcharacterization of fracture

  43. Peel-in (paper) (Salminen et al, EPL06) 3- Statisticalcharacterization of fracture

  44. 3.2- Interfacial fracture Gutenberg-Richter exponent 3- Statisticalcharacterization of fracture

  45. Slope -1 3.2- Interfacial fracture Omori’slaw 3- Statisticalcharacterization of fracture

  46. 3.2- Interfacial fracture (A. Marchenko et al., 06) 3- Statisticalcharacterization of fracture

  47. Humid air n-tetradecane

  48. 3.2- Interfacial fracture Tetradecane Humid air 3- Statisticalcharacterization of fracture

  49. 3.2- Interfacial fracture San Andreas fault Approximateenergyradiated (1015J) 10-4 10-2 1 102 104 103 102 Number of earthquakes 10 1 Magnitude (J. Sethna et al) 3- Statisticalcharacterization of fracture

More Related