1 / 87

Wave-equation tomography using image-space phase-encoded data

Wave-equation tomography using image-space phase-encoded data. Claudio Guerra*, Yaxun Tang and Biondo Biondi. SEG Houston – 2009. Motivation. Velocity determination is a difficult task, especially in areas of complex geology. Motivation.

yael
Download Presentation

Wave-equation tomography using image-space phase-encoded data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wave-equation tomography using image-spacephase-encoded data Claudio Guerra*, Yaxun Tang and Biondo Biondi SEG Houston – 2009

  2. Motivation • Velocity determination is a difficult task, especially in areas of complex geology

  3. Motivation • Velocity determination is a difficult task, especially in areas of complex geology • Wave-equation tomography (WETom) is a robust method to estimate the slowness model • uses wavefields as carriers of information • insensitive to multi-pathing

  4. Motivation • Velocity determination is a difficult task, especially in areas of complex geology • Wave-equation tomography (WETom) is a robust method to estimate the slowness model • uses wavefields as carriers of information • insensitive to multi-pathing • computationally expensive

  5. Motivation • WETom can be accelerated by • solving in a target-oriented way

  6. Motivation • WETom can be accelerated by • solving in a target-oriented way • using generalized sources • Shen and Symes (2008) – image-space WETom • Vigh and Starr (2008) – data-space WETom

  7. Motivation • Image-space generalized sources • The prestack exploding-reflector modeling (Biondi, 2006) synthesizes areal data from a prestack image obtained with wave-equation methods

  8. x z ? ? ? Motivation • Image-space generalized sources • The prestack exploding-reflector modeling (Biondi, 2006) synthesizes areal data from a prestack image obtained with wave-equation methods • Wavefields are upward propagated to the top of thetarget saving computer time

  9. Motivation • Image-space generalized sources • The prestack exploding-reflector modeling (Biondi, 2006) synthesizes areal data from a prestack image obtained with wave-equation methods • Wavefields are upward propagated to the top of thetarget saving computer time • Additional savings when combining modeling experiments

  10. Motivation – reduce costs in WETom x x True Background z 5% cost Optimized z

  11. Agenda • Introduction • Prestack exploding-reflector modeling • Image-space phase-encoded wavefields (ISPEW) • Image-space WETom using ISPEW • Numerical example • Conclusions

  12. Prestack exploding–reflector modeling • The exploding reflector assumes all energy focused at zero-subsurface offset • Generalizes the exploding reflector concept Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  13. Prestack exploding–reflector modeling • Generalizes the exploding reflector concept • Uses a partially focused wave-equation prestack image as initial condition Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  14. Prestack exploding–reflector modeling • Generalizes the exploding reflector concept • Uses a partially focused wave-equation prestack image as initial condition • Models areal source and receiver wavefields suitable for MVA Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  15. Prestack exploding–reflector modeling • The exploding–reflector assumes zero–subsurface offset reflectivity • Slowness inaccuracy spreads energy to nonzero-offsets • Generalizes the exploding reflector concept • Uses a partially focused wave-equation prestack image as initial condition • Models areal source and receiver wavefields suitable for MVA • Can be used in a target–oriented way since the wavefields can be collected at any depth Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  16. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  17. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  18. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  19. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  20. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  21. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  22. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  23. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  24. Prestack exploding–reflector modeling Original ADCIG Perm ADCIG angle angle z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  25. Prestack exploding–reflector modeling • Combination of modeling experiments • reduces the data size Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  26. Prestack exploding–reflector modeling • Combination of modeling experiments • reduces the data size • generates crosstalk Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  27. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  28. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  29. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  30. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  31. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  32. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  33. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  34. x h z Prestack exploding–reflector modeling x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  35. x h x h z Prestack exploding–reflector modeling Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  36. Image-space phase-encoded wavefields • Phase-encode the modeling experiments • reduces the data size Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  37. Image-space phase-encoded wavefields • Phase-encode the modeling experiments • reduces the data size • attenuates crosstalk Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  38. Image-space phase-encoded wavefields • Phase-encode the modeling experiments • reduces the data size • attenuates crosstalk • keeps the kinematic information Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  39. Image-space phase-encoded wavefields • Phase-encode the modeling experiments • reduces the data size • attenuates crosstalk • keeps the kinematic information • requires picking the prestack image Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  40. Image-space phase-encoded wavefields • Phase-encode the modeling experiments • reduces the data size • attenuates crosstalk • keeps the kinematic information • requires picking the prestack image • allows selecting key reflectors Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  41. Image-space phase-encoded wavefields Source wavefield Receiver wavefield Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  42. Image-space phase-encoded wavefields Source wavefield initial condition Receiver wavefield initial condition Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  43. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  44. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  45. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  46. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  47. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  48. x h z Image-space phase-encoded wavefields x z Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  49. Image-space phase encoded wavefields Receiver wavefield Source wavefield x 0 t t x 0 Introduction PERM ISPEW WETom using ISPEW Example Conclusion

  50. x h x h z No phase-encoding Random phase-encoding Image-space phase-encoded wavefields Introduction PERM ISPEW WETom using ISPEW Example Conclusion

More Related