1 / 38

Bioelectrocatalysis

Bioelectrocatalysis. Arkady A. Karyakin. Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia. Bioelectrocatalysis. is an acceleration of electrode reactions by biological catalysts. Whole cells. Enzymes. Applications of bioelectrocatalysis. Fuel electrodes

xanto
Download Presentation

Bioelectrocatalysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bioelectrocatalysis Arkady A. Karyakin Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia

  2. Bioelectrocatalysis is an acceleration of electrode reactions by biological catalysts Whole cells Enzymes

  3. Applications of bioelectrocatalysis Fuel electrodes (biofuel cells) Biosensors Electrosysthesis

  4. Enzyme bioelectrocatalysis

  5. BIOELECTROCATALYSIS P2 S2

  6. How to involve enzymes in bioelectrocatalysis? Use of mediators: Direct bioelectrocatalysis:

  7. Direct bioelectrocatalysis if electrochemistry is determined by the catalyzed reaction or/and redox activity of biocatalyst

  8. Oxidase catalysis

  9. Redox activity of oxidases E ≈ -0.064 В (NHE) FAD

  10. Mediated bioelectrocatalysis – II generation biosensors A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. G. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Analytical Chemistry 56, 667-671 (1984).

  11. Glucose tests

  12. Mediated bioelectrocatalysis – II generation biosensors B.A. Gregg, A. Heller. Anal. Chem. 62 (1990) 258

  13. Wiring of glucose oxidase E = -0.195 mV (Ag|AgCl) Heller, A. Physical Chemistry Chemical Physics2004, 6, 209-216.

  14. Glucose test • Therasense: • 0.3 µL of blood

  15. Dehydrogenase catalysis > 500 enzymes

  16. NAD+|NADH redox reaction • the lowest potential in aerobic organisms; • on bare electrodes the overvoltages exceed 1 Volt.

  17. Toluidine Blue Methylene Blue Methylene Green Brilliant Cresyl Blue Neurtal Red Azur A Thionine

  18. Toluidine Blue 2 0.1mA/cm -0.4 0.4 0.8 E, V Electropolymerized azines: a new class of electroactive polymers

  19. Hypothesis on polyazine structure A.A. Karyakin, E.E. Karyakina, H.-L. Schmidt. Electroanalysis (1999) 11 149.

  20. Catalysis of NAD+ reduction and NADH oxidation 0.1 mM NADH 0.1 mM NAD+

  21. Equilibrium NAD+|NADH potential A.A.Karyakin, Yu.N.Ivanova, E.E.Karyakina Electrochem. Commun. (2003) 5, 677-80

  22. Direct enzyme bioelectrocatalysis

  23. Protein electroactivity Cytochrome C S.R. Betso, M.H. Klapper, L.B. Anderson. J. Am. Chem. Soc. 94 (1972) 8197-204. M.R. Tarasevich, V.A. Bogdanovskaya. Bioelectrochem. Bioenerg. 3 (1976) 589-95. M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. , Chem. Commun. (1977) 71 P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8 Niki K, Yagi T, Inokuchi H, Kimura K. JACS101 (1979) 3335-40.

  24. ē ē Promoters for protein electroactivity gold M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. , Chem. Commun. (1977) 71 P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8

  25. Direct bioelectrocatalysis Est = 1.2 V Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D., M.R. Tarasevich, A.I Yaropolov. Dokl.Akad.Nauk SSSR(Proc. Acad. Sci.) 240 (1978) 615-618

  26. Iron-sulfur clusters HEM PQQ Enzymes for direct bioelectrocatalysis Others

  27. Direct bioelectrocatalysis A.I Yaropolov, V. Malovik, Varfolomeev S.D., Berezin I. V. Dokl.Akad.Nauk SSSR(Proc. Acad. Sci.) 249 (1979) 1399-401

  28. Direct bioelectrocatalysis A.I. Yaropolov, A.A. Karyakin, S.D. Varfolomeyev, I.V. Berezin. Bioelectrochem. Bioenerg. 12 (1984) 267-77

  29. (Yaropolov A.I., Karyakin A.A., Varfolomeyev S.D., Berezin I.V. Bioelectrochem. & Bioenergetics 12 (1984) 267-277) BIOELECTROCATALYSIS by Th. roseopersicina hydrogenase (1), (3) - H2 ; (2) - Ar (3) - without active enzyme

  30. Nernst’ equation for Equilibrium hydrogen potential (100% energy conversion)

  31. How to involve oxidases in bioelectrocatalysis? • surface pre-treatment; • usingof promoters; • surface design by conducting polymers.

  32. Fundamentals of direct bioelectrocatalysis Investigations of enzyme redox centers Redox switching of enzyme activity

  33. Direct bioelectrocatalysis by intact cells

  34. Principal structure of bacterial cells

  35. Inorganic ion reducing bacteria Shewanellaputrefaciens Lactateas electron donor Insoluble Fe3+as electron acceptor

  36. Electroactivity of Shewanellaputrefaciens A – air exposed cells B – air exposed with lactate C – no air, but at + 200 mV D – at +200 mV with lactate Kim, B. H.; Ikeda, T.; Park, H. S.; Kim, H. J.; Hyun, M. S.; Kano, K.; Takagi, K.; Tatsumi, H. Biotechnology Techniques1999, 13, 475-478.

  37. Geobactersulfurreducens on graphite electrode Bond, D. R.; Lovley, D. R. Applied And Environmental Microbiology2003, 69, 1548.

  38. Advantagesof bioelectrocatalysis: • a possibility for electrochemistry of complex organic reactions; • high efficiency at room temperature and moderate overvoltages; • achieve high specificity. Disadvantages: • inherent instability, • large dimensions • of biological catalysts.

More Related