1 / 98

NMR Spectroscopy

NMR Spectroscopy. Judith Klein-Seetharaman Department of Structural Biology jks33@pitt.edu. Objectives of this Lecture and Practicum. Resources Physical principle Sample requirements Parameters that are measured by NMR Dynamics by NMR Limitations Practical aspects

wynn
Download Presentation

NMR Spectroscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NMR Spectroscopy Judith Klein-SeetharamanDepartment of Structural Biology jks33@pitt.edu

  2. Objectives of this Lecture and Practicum • Resources • Physical principle • Sample requirements • Parameters that are measured by NMR • Dynamics by NMR • Limitations • Practical aspects • Setup of NMR experiments (downstairs) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  3. Resources Websites • http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • http://www.bmrb.wisc.edu/ • http://www.biochem.ucl.ac.uk/bsm/nmr/ubq/ • http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/wutrich-lecture.pdf • http://www.cis.rit.edu/htbooks/nmr/ • http://www.ch.ic.ac.uk/local/organic/nmr.html • http://www.spectroscopynow.com/ • http://www.chem.queensu.ca/FACILITIES/NMR/nmr/webcourse/ • http://spincore.com/nmrinfo/ • http://www.chembio.uoguelph.ca/driguana/NMR/TOC.HTM • http://www.embl-heidelberg.de/nmr/sattler/embo/handouts/griesinger_lecture_pof.pdf • http://dupont.molbio.ku.dk/teach/course/introNMR.pdf • http://www.infochembio.ethz.ch/links/en/spectrosc_nmr_lehr.html Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  4. Resources Books NMR Books: • Protein NMR Techniques (Methods in Molecular Biology) by A. Kristina Downing (Editor) • Protein NMR Spectroscopy: Principles and Practice by John Cavanagh, Wayne J. Fairbrother, III, Arthur G. Palmer, Nicholas J. Skelton, Mark Rance • Spin Dynamics: Basics of Nuclear Magnetic Resonance by Malcolm H. Levitt • Principles of Nuclear Magnetic Resonance in One and Two Dimensions by Richard R. Ernst, Geoffrey Bodenhausen, Alexander Wokaun • 200 and More NMR Experiments: A Practical Course by Stefan Berger, Siegmar Braun • Basic One- and Two-Dimensional NMR Spectroscopy by Horst Friebolin • NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry by Harald Günther • NMR Data Processing by Hoch • NMR: The Toolkit by P. J. Hore, J. A. Jones, S. Wimperis • Nuclear Magnetic Resonance by P. J. Hore • NMR for Physical and Biological Scientists by Thoma Pochapsky • Understanding NMR Spectroscopy by James Keeler • NMR of Proteins (Topics on Molecular and Structural Biology) by G. M. Clore, A. M. Gronenborn • The Nuclear Overhauser Effect in Structural and Conformational Analysis by David Neuhaus, Michael P. Williamson Biophysics Books with chapters on NMR: • Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function by Charles R Cantor, Paul R Schimmel • Principles of Physical Biochemistry by Kensal E van Holde, Curtis Johnson, Pui Shing Ho Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  5. Objectives of this Lecture and Practicum • Resources • Physical principle • Sample requirements • Parameters that are measured by NMR • Dynamics by NMR • Limitations • Practical aspects • Setup of NMR experiments (downstairs) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  6. Nuclei in a magnetic field http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  7. Energy Difference http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  8. Macroscopic View http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  9. http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  10. Experiment: Recycle delay dependent on T1 relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  11. The NMR signal http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • Analogy: conducting loop rotating in a magnetic field: Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  12. Fourier Transform http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  13. Soft pulses vs. hard pulses http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  14. Obtaining a spectrum http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  15. Product Operator Formalism http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  16. http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  17. http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  18. HSQC Experiment http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  19. HSQC TOCXY http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  20. Signal Intensity http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • Boltzmann distribution Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  21. Objectives of this Lecture and Practicum • Resources • Physical principle • Sample requirements • Parameters that are measured by NMR • Dynamics by NMR • Limitations • Practical aspects • Setup of NMR experiments (downstairs) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  22. Sample requirements: Sources Think of the requirements that we may need to fulfil! Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  23. Example Comparison of expression systems for rhodopsin http://www.gla.ac.uk/ibls/BMB/mdh/images/conrd1-cos-golgi.gif http://www.wjgnet.com/images/english/V11/2576-2a.jpg http://www.icr.ac.uk/structbi/baculovirus/img/infectedsf9.jpg spacebio.net/modules/ mb_teare.html genetics.med.harvard.edu/ ~winston/ ___________ ___________ ___________ ___________ ___________ ___________ What are the advantages and disadvantages of each expression system? Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  24. Where can we get these molecules from? Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  25. Sources of biomolecules Summary • Native sources • Best quality (correct fold, posttranslational modifications etc.) • Not always best quantity • Limitations in labeling • No mutants • Chemical synthesis • Good for small molecules • Not good for large proteins • Biosynthesis • A variety of expression systems exist, all with their advantages and disadvantages. • Required for isotope labeling for NMR Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  26. Objectives of this Lecture and Practicum • Resources • Physical principle • Sample requirements • Parameters that are measured by NMR • Dynamics by NMR • Limitations • Practical aspects • Setup of NMR experiments (downstairs) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  27. NMR parameters Chemical Shift http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf See handout Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  28. Chemical shift perturbation Figure 2 in “Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands Laurent Volpon, Michael J Osborne, Ivan Topisirovic, Nadeem Siddiqui and Katherine LB Borden The EMBO Journal (2006) 25, 5138–5149 Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  29. NMR parameters The Nuclear Overhauser Effect http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  30. Measuring NOE’s http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  31. NMR Parameters Dipolar Couplings http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  32. NMR Structure of Bcl-XL Bound to BH3 Peptide • Structure was solved with a homolog of BH3 helix. • Protein-protein interaction groove was identified on anti-apoptotic Bcl-XL. Identify a drug that binds in the BH3 pocket of Bcl-XL, inhibit binding to BID -> normal apoptosis. PDB ID:1G5J Drug design approach: SAR by NMR Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  33. NMR parameters • chemical shifts • NOE • Dipolar coupling • coupling constants • HetNOE • longitudinal relaxation rates (R1) • transverse relaxation rates (R2) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  34. Objectives of this Lecture and Practicum • Resources • Physical principle • Sample requirements • Parameters that are measured by NMR • Dynamics by NMR • Limitations • Practical aspects • Setup of NMR experiments (downstairs) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  35. Theory-NMR Relaxation mechanism NMR Dynamics on Different Time Scales time scaletype ns-ps fast internal motions us-ms slow internal motions ms-days proton exchange Protein are dynamic molecules http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/relaxdyn NMR dynamics can be used on a broad range of timescales. Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  36. Relaxation • Longitudinal relaxation (T1): return of longitudinal (z-component) to its equilibrium value • Transverse relaxation (T2): decay of transverse (x,y-component) Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  37. T1 Relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  38. Experiment: Recycle delay dependent on T1 relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  39. T2 Relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  40. Mechanisms of Relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • Dipolar interaction Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  41. Mechanisms of Relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • Chemical shift anisotropy • Scalar relaxation (chemical exchange, rapid T1 relaxation) • Quadrupolar relaxation • Spin rotation relaxation • Interaction with unpaired electrons Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  42. Quantification of motion- strategies to obtain dynamic information from NMR relaxation experiment Measure R1, R2, heteronuclear NOE “model free” approach Get order parameter S2 ,τe, τm Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  43. Lipari-Szabo Model Free Approach http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  44. Lipari Szabo http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf • Order parameters S2 • τe, effective correlation function time for internal motions • τm, overall tumbling correlation time for global motions Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  45. Lipari–Szabo “model-free” approach- don’t depend on a specific physical model • Estimate (τm) from R2/R1 for a selected subset of the residues • fits to the observed relaxation data using various regression variables • model-selection criteria are used to decide which choice is appropriate for each residue • Reoptimize using the selected models. • Uncertainties in the optimized parameters were obtained by Monte Carlo simulation. Michael Andrec, Gaetano T. Montelione, RonaldM. Levy Journal of Magnetic Resonance 139, 408–421 (1999) “Model-free” is the most popular method to calculate dynamic parameters Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  46. Inversion Recovery: Measure T1 http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  47. Carr-Purcell spin echo: Measure T2 http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  48. Comparison of T1 and T2 relaxation http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  49. Dependence of T1, T2 on Tumbling Time http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

  50. Chemical Exchange http://www.oci.unizh.ch/group.pages/zerbe/NMR.pdf Computational Biology Laboratory Course – Klein-Seetharaman – NMR Lecture

More Related