robust methodologies for partition clustering
Download
Skip this Video
Download Presentation
Robust methodologies for partition clustering

Loading in 2 Seconds...

play fullscreen
1 / 46

Robust methodologies for partition clustering - PowerPoint PPT Presentation


  • 86 Views
  • Uploaded on

Robust methodologies for partition clustering. Paulo Lisboa Terence Etchells, Ian Jarman and Simon Chambers. Overview. Partition clustering - critique Decomposition of the covariance matrix Landscape mapping of cluster solutions

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Robust methodologies for partition clustering' - winter-cook


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
robust methodologies for partition clustering

Robust methodologies for partition clustering

Paulo LisboaTerence Etchells, Ian Jarman and Simon Chambers

overview
Overview
  • Partition clustering - critique
  • Decomposition of the covariance matrix
  • Landscape mapping of cluster solutions
  • Validation for two synthetic data sets and metabolic sub-typing
bioinformatics nottingham tenovous primary breast carcinoma series
BioinformaticsNottingham Tenovous Primary Breast Carcinoma Series

Consecutive series of 1,944 cases of primary operable invasive breast cancer(n=1,076 with all markers present)

Patients presenting during 1986-98

Protein expression comprising

25 immunohistochemical markers related to tumour malignancyderived through high-throughput protein expression using TMA

Abd El-Rehim et al, Int J Cancer, 116, 340-350, 2005.

partition clustering open issues
Partition clustering –open issues

K-means

i. Assume #K

ii. Initialise #N ?

iii. Sort by optimality ?

iv. Select best for #K ?

v. Select #K(s) ?

vi. Single cluster or ensemble ?

  • Identify a suitable algorithm:
  • Model-based or model-free ?
  • Hierarchical, K-means, PAM ?
  • Return {Sa,...,Sz} solutions
  • Validate & interpret each solution
separation index decomposition of the scatter matrix1
Separation index:Decomposition of the scatter matrix

SW1

SW2

SB

  • Invariant separation matrix and index
theorem is invariant to dimensionality reduction under mahalanobis rotations
Theorem: is invariant to dimensionality reduction under Mahalanobis rotations

~

a1

~

a3

~

a2

optimality principle
Optimality principle

i. N initialisations

ii. Sort by J

iii. Select top p%

iv. Calculate pairwise CV

v. Retain med(CV)

vi. Plot (J, med_CV)

  • Reproducibility with
  • Best Separation - max(J)
  • Best Concordance – max(CV)
  • under repeated initialisations
synthetic data 10 cohorts3
Synthetic data (10 cohorts)

10

2

9

85

58

100

97

66

45

6

38

1

5

113

5

52

55

18

133

48

59

44

6

42

177

89

8

118

7

24

84

3

3

42

118

78

92

4

124

63

4

88

112

3

208

93

6

79

1

55

189

150

127

24

23

69

101

1

1

189

3

59

54

219

117

7

137

177

7

238

5

21

49

2

172

238

212

60

2

2

143

335

5

183

161

978

294

238

2

47

192

738

2

142

2

185

8

388

738

173

29

153

94

1

455

8

190

4

28

177

1

170

98

181

455

28

192

177

9

98

2

361

4

1

164

181

177

383

100

5

169

6

97

190

144

2

173

1

161

3

176

171

190

97

176

19

96

4

5

160

96

4

3

132

1

96

129

3

129

126

132

127

97

97

3

6

7

4

97

97

95

95

97

95

96

bioinformatics nottingham tenovous primary breast carcinoma series1
BioinformaticsNottingham Tenovous Primary Breast Carcinoma Series

Consecutive series of 1,944 cases of primary operable invasive breast cancer(n=1,076 with all markers present)

Patients presenting during 1986-98

Protein expression comprising

25 immunohistochemical markers related to tumour malignancyderived through high-throughput protein expression using TMA

Abd El-Rehim et al, Int J Cancer, 116, 340-350, 2005.

cluster hierarchy 1
Cluster hierarchy (1)

C5, 179

159

C7, 186

160

C2, 106

C4, 230

105

206

67

C1, 266

C5, 120

105

240

44

C3, 108

C2, 109

C4, 430

107

407

107

112

C4, 116

C3, 459

C3, 130

458

114

C6, 209

C4, 94

C1, 781

C3, 285

202

22

246

322

62

94

C1, 96

C2, 373

C5, 205

103

201

93

24

51

65

24

C2, 209

C1, 121

C2, 295

C8, 106

102

105

112

244

C1, 244

C2, 198

C6, 119

208

26

116

219

79

C6, 174

C1, 152

C3, 215

172

186

C2, 234

169

C4, 277

44

51

91

C1, 142

C5, 192

101

127

C3, 205

94

C7, 167

cluster hierarchy 2
Cluster hierarchy (2)

C1, 177

164

C3, 185

172

C2, 131

C5, 184

120

167

C5, 237

C4, 189

15

183

201

46

65

C8, 183

C4, 209

C1, 338

300

134

161

116

228

C2, 249

C3, 459

C1, 241

458

155

125

78

105

C3, 246

C3, 163

C1, 781

C2, 365

209

322

151

C6, 121

C2, 373

C4, 252

240

114

91

102

51

124

C3, 238

C1, 119

C2, 295

C7, 106

19

243

C1, 244

C2, 229

C5, 104

228

229

116

93

99

101

C5, 97

C4, 135

C6, 120

113

117

C7, 138

17

C3, 117

116

136

198

C6, 126

C2, 198

20

62

C1, 90

66

C4, 93

sub type profiling
Sub-type profiling

Clusters A

Clusters B

Luminal New 2

Luminal N

sub type profiling1
Sub-type profiling

Clusters A

Clusters B

Luminal A

HER2

sub type profiling2
Sub-type profiling

Clusters A

Clusters B

Basal p53 -

Basal muc1 +

Basal p53 +

Basal muc1 -

summary
Summary
  • Partition clustering - critique
  • Decomposition of the covariance matrix
  • Landscape mapping of cluster solutions
  • Validation for two synthetic data sets and metabolic sub-typing
ferrara data n 6333
Ferrara data (n=633)

JMU Cluster 1/5

JMU Cluster 2/5

JMU Cluster 4/5

JMU Cluster 3/5

JMU Cluster 5/5

ad