Dr hugh blanton entc 3331 l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 53

Dr. Hugh Blanton ENTC 3331 PowerPoint PPT Presentation


  • 122 Views
  • Uploaded on
  • Presentation posted in: General

ENTC 3331 RF Fundamentals. Dr. Hugh Blanton ENTC 3331. Gradient, Divergence and Curl: the Basics . We first consider the position vector, l : where x , y , and z are rectangular unit vectors. . Since the unit vectors for rectangular coordinates are constants, we have for d l :.

Download Presentation

Dr. Hugh Blanton ENTC 3331

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Dr hugh blanton entc 3331 l.jpg

ENTC 3331

RF Fundamentals

Dr. Hugh Blanton

ENTC 3331


Gradient divergence and curl the basics l.jpg

Gradient, Divergence and Curl: the Basics


Slide3 l.jpg

  • We first consider the position vector, l:

    • where x, y, and z are rectangular unit vectors.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 3


Slide4 l.jpg

  • Since the unit vectors for rectangular coordinates are constants, we have for dl:

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 4


Slide5 l.jpg

  • The operator, del: Ñ is defined to be (in rectangular coordinates) as:

    • This operator operates as a vector.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 5


Gradient l.jpg

Gradient

  • If the del operator, Ñ operates on a scalar function, f(x,y,z), we get the gradient: 

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 6


Slide7 l.jpg

  • We can interpret this gradient as a vector with the magnitude and direction of the maximum change of the function in space.

    • We can relate the gradient to the differential change in the function: 

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 7


Slide8 l.jpg

dT

=

Ñ

×

ˆ

T

a

l

dl

Directional derivatives:

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 8


Slide9 l.jpg

  • Since the del operator should be treated as a vector, there are two ways for a vector to multiply another vector:

    • dot product and

    • cross product.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 9


Divergence l.jpg

Divergence

  • We first consider the dot product:

    • The divergence of a vector is defined to be:

      • This will not necessarily be true for other unit vectors in other coordinate systems.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 10


Slide11 l.jpg

  • To get some idea of what the divergence of a vector is, we consider Gauss' theorem (sometimes called the divergence theorem).

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 11


Gauss theorem gau b s theorem l.jpg

Gauss' Theorem (Gaub’s Theorem

  • We start with:

Surface Areas

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 12


Slide13 l.jpg

  • We can see that each term as written in the last expression gives the value of the change in vector A that cuts perpendicular through the surface.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 13


Slide14 l.jpg

  • For instance, consider the first term:

    • The first part:

      • gives the change in the x-component of A

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 14


Slide15 l.jpg

  • The second part,

    • gives the yz surface (or x component of the surface, Sx) where we define the direction of the surface vector as that direction that is perpendicular to its surface.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 15


Slide16 l.jpg

  • The other two terms give the change in the component of A that is perpendicular to the xz (Sy) and xy (Sz) surfaces.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 16


Slide17 l.jpg

  • We thus can write:

    • where the vector S is the surface area vector.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 17


Slide18 l.jpg

  • Thus we see that the volume integral of the divergence of vector A is equal to the net amount of A that cuts through (or diverges from) the closed surface that surrounds the volume over which the volume integral is taken.

    • Hence the name divergence for

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 18


Slide19 l.jpg

  • So what?

    • Divergence literally means to get farther apart from a line of path, or

    • To turn or branch away from.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 19


Slide20 l.jpg

Consider the velocity vector of a cyclist not diverted by any thoughts or obstacles:

Goes straight ahead at constant velocity.

 (degree of) divergence  0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 20


Slide21 l.jpg

Now suppose they turn with a constant velocity

 diverges from original direction

(degree of) divergence  0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 21


Slide22 l.jpg

Now suppose they turn and speed up.

 diverges from original direction

(degree of) divergence >> 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 22


Slide23 l.jpg

Current of water

 No divergence from original direction

(degree of) divergence = 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 23


Slide24 l.jpg

Current of water

 Divergence from original direction

(degree of) divergence ≠ 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 24


Slide25 l.jpg

+

E-field between two plates of a capacitor.

Divergenceless

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 25


Slide26 l.jpg

I

b-field inside a solenoid is homogeneous and divergenceless.

divergenceless  solenoidal

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 26


Slide27 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 27


Slide28 l.jpg

CURL


Slide29 l.jpg

+

+

  • Two types of vector fields exists:

Electrostatic Field where the field lines are open and there is circulation of the field flux.

Magnetic Field where the field lines are closed and there is circulation of the field flux.

circulation (rotation)  0

circulation (rotation) = 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 29


Slide30 l.jpg

  • The mathematical concept of circulation involves the curl operator.

    • The curl acts on a vector and generates a vector.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 30


Slide31 l.jpg

  • In Cartesian coordinate system:

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 31


Slide32 l.jpg

  • Example

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 32


Slide33 l.jpg

  • Important identities:

for any scalar function V.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 33


Stoke s theorem l.jpg

Stoke’s Theorem

  • General mathematical theorem of Vector Analysis:

Closed boundary of that surface.

Any surface

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 34


Slide35 l.jpg

  • Given a vector field

    • Verify Stoke’s theorem for a segment of a cylindrical surface defined by:

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 35


Slide36 l.jpg

z

y

x

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 36


Slide37 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 37


Slide38 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 38


Slide39 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 39


Slide40 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 40


Slide41 l.jpg

  • Note that has only one component:

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 41


Slide42 l.jpg

The integral of over the specified surface S is

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 42


Slide43 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 43


Slide44 l.jpg

z

c

d

b

y

x

a

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 44


Slide45 l.jpg

The surface S is bounded by contour C = abcd.

The direction of C is chosen so that it is compatible with the surface normal by the right hand rule.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 45


Slide46 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 46


Slide47 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 47


Slide48 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 48


Slide49 l.jpg

Curl

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 49


Slide50 l.jpg

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 50


Curl or rot l.jpg

curl or rot

  • place paddle wheel in a river

  • no rotation at the center

  • rotation at the edges

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 51


Slide52 l.jpg

  • the vector un is out of the screen

  • right hand rule

  • Ds is surface enclosed within loop

  • closed line integral

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 52


Electric field lines l.jpg

Electric Field Lines

Rules for Field Lines

  • Electric field lines point to negative charges

  • Electric field lines extend away from positive charges

  • Equipotential (same voltage) lines are perpendicular to a line tangent of the electric field lines

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 53


  • Login