1 / 33

FFK 1 1, 5– 9 декабря , 20 1 1, Дубна , Россия

FFK 1 1, 5– 9 декабря , 20 1 1, Дубна , Россия. Ньютоновская гравитационная постоянная: современные эксперименты и новое значение CODATA В. К. Милюков , ГАИШ МГУ. First G value: 1797-98, Henry Cavendish: G=(6.67±0.07)×10 -11 m 3 kg -1 s -2. CODATA 20 10 value G = (6.67384 ± 0.00080) 

weylin
Download Presentation

FFK 1 1, 5– 9 декабря , 20 1 1, Дубна , Россия

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FFK11, 5– 9 декабря, 2011, Дубна, Россия Ньютоновская гравитационная постоянная:современные эксперименты и новое значение CODATAВ. К. Милюков, ГАИШ МГУ First G value: 1797-98, Henry Cavendish: G=(6.67±0.07)×10-11 m3kg-1s-2 CODATA 2010 value G=(6.67384±0.00080) 10-11 m3kg-1s-2,

  2. The best world experiments on the measurement of G and CODATA values

  3. The torsion balances and time of swing method No 2 No 1

  4. The newexperimenton determination of thegravitation constant in HUST (China)

  5. General and Schematic view of the HUST apparatus for measurement of G 890 mm long, 25 μm diametertungsten fiber

  6. The torsion balance and source sphere masses 75.59 g Stainless steel spheres M=778 g; D=5.71 mm m=75.59 g 91.52 x 12.01 x 27.58 mm

  7. Error budget (1)

  8. Error budget (2)

  9. New value of Gravitational Constant • G=(6.67349  0.00018)10-11 m3kg-1s-2 with a standard uncertainty 26 ppm Jun Luo, et al //Phys. Rev. Lett., 102, 240801 (2009) Liang-Cheng Tu, et al // Phys. Rev. D 82, 022001 (2010)

  10. A Simple Pendulum Determination of the Gravitational ConstantG. V. Parks and J.E. Faller JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309, USA

  11. Принцип эксперимента: С помощью интерферометра Фабри-Перо измеряется расстояние между двумя пробными телами относительно точек подвеса Технические характеристики: Маятники: медь, 780 г. Длина подвеса: 72 см Расстояние между центрами пр. масс: 34 см Массы- источники: вольфрамовый сплав, 120 кг., Движение масс на воздушных подшипниках (air bearings). Маятники внутри вакуумной камеры. Используется магнитное демпфирование для подавления маятниковых колебаний He-Ne лазер, 1 μW, finesse 400

  12. General view of the experimental setup

  13. Error budget

  14. New value of Gravitational Constant • G=(6.67349  0.00014)10-11 m3kg-1s-2 with a standard uncertainty 21 ppm Harold Parks & James Faller // Phys. Rev. Lett., 105, 110801 (2010)

  15. An systematic error of big G due to the anelasticty of the torsion wire (Kuroda effect)

  16. Correction of the G value due to Kuroda effect HUST 2009: Q≈ 1700; ΔG/G= -212 ppm SAI 1979: Q ≈ 2500; ΔG/G= -127 ppm

  17. Atom Interferometer Measurement of the Newtonian Constant of Gravity Fig. 1. Schematic of the experiment. J. B. Fixler1, G. T. Foster2, J. M. McGuirk3 and M. A. Kasevich1 1 Stanford University, Stanford, USA. 2 City University of New York, New York, USA. 3 Simon Fraser University, British Columbia,, Canada. We measured the Newtonian constant of gravity, G, using a gravity gradiometer based on atom interferometry. The gradiometer measures the differential acceleration of two samples of laser-cooled Cs atoms. The change in gravitational field along one dimension is measured when a well-characterized Pb mass is displaced J B Fixler et al. Science 2007;315:74-77 Published by AAAS

  18. Fig. 3. A typical data sequence showing a modulation of the gradiometer phase output as the Pb source mass is displaced 27.940 cm from the top of the lower chamber. J B Fixler et al. Science 2007;315:74-77 Published by AAAS

  19. Fig. 4. Data used in the determination of G. J B Fixler et al. Science 2007;315:74-77 G=(6.693  0.041)10-11 m3kg-1s-2 with a standard uncertainty 6100 ppm Published by AAAS

  20. Conclusion 1798 Henry Gavendish : “The apparatus is very simple” (Philos. Trans. R. Soc. London, 88, 469, 1798) 2010 • James Faller: • “The measurement is very hard” (Phys. Rev. Lett., 105, 2010) • “Big G is the Mt. Everest of precision measurement science, and it should be climbed.”

More Related