1 / 53

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals. Christiane Grisé University of Ottawa November 3, 2005. Radical Chemistry. Outline. Basic concepts of radical chemistry Description of asymmetric methods.

waylon
Download Presentation

Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radicals in Asymmetric Synthesis : Formation of Tertiary and Quaternary Carbon Centers Using Acyclic Radicals Christiane Grisé University of Ottawa November 3, 2005

  2. Radical Chemistry

  3. Outline • Basic concepts of radical chemistry • Description of asymmetric methods

  4. Radical Chain Reaction Mechanism

  5. Initiation • Dibenzoyl peroxide (60-80 °C) • AIBN (azoisobutyronitrile) • Derivative of AIBN developed for reactions at room temperature (V-70) • Et3B : Initiator at -78 °C • Inorganic compounds : ZnCl2, SmI2 and other transition metals (Mn, Ni, Cu, Fe)

  6. Propagation – Types of Reactions • Abstraction • Addition • Fragmentation • Rearrangement

  7. Radical Stability • Can predict radical stability by looking at the bond dissociation energy • Alkyl radical : tertiary>secondary>primary • Conjugating groups also stabilize radicals • Both electron-withdrawing and electron-donating groups stabilize radicals

  8. Explanation by Frontier Molecular Orbitals • Radicals have Singly Occupied Molecular Orbitals (SOMO) • Most radicals are uncharged and are considered soft species

  9. Reactivity and Frontier Molecular Orbitals

  10. Radical Addition to α,β-Unsaturated Compounds • Nucleophilic radical • Orbital interactions are important • Size of coefficient explains the regioselectivity

  11. Stereoselectivity and Radicals Cyclic radicals : The anti Rule Acyclic radicals : substrate controlled, chiral auxiliaries and chiral reagents

  12. Substrate Control : Ester Substituted Radicals

  13. Important Factors for Diastereoselective Reduction • Delocalization of the radical with the adjacent ester • Minimization of 1,3-allylic strain • Dipole-dipole repulsions are decreased • Stabilization by hyperconjugation Guindon, Y.; Yoakim, C.; Gorys, V.; Ogilvie, W.W.; Delorme, D.; Renaud, J.; Robinson, G.; Lavallée, J.-F.; Slassi, A.; Rancourt, J.; Durkin, K.; Liotta, D. J. Org. Chem. 1994, 59, 1166. Guindon, Y.; Slassi, A.; Rancourt, J.; Bantle, G.; Bencheqroun, M.; Murtagh, L.; Ghiro, E.; Jung, G. J. Org. Chem. 1995, 50, 288.

  14. Effect of Substituents on Diastereoselectivity Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem.1997, 62, 9276.

  15. The Exocyclic Effect Definition1 : Increased diastereoselectivity demonstrated by the reactions of a radical adjacent or exo to a ring formed by tethering the β-heteroatom to the R1 substituent in the radical shown : 1 Guindon, Y.; Faucher, A-M.; Bourque, E.; Caron, V.; Jung, G.; Landry, S. J. Org. Chem.1997, 62, 9276.

  16. Lewis Acid Can Reverse Diastereoselectivity Endocyclic effect Guindon, Y.; Lavallée, J.-F.; Llinas-Brunet, M.; Horner, G.; Rancourt, J. J. Am. Chem. Soc. 1991, 113, 9701.

  17. Exocyclic vs Endocyclic Effect Reagent Anti:Syn Me2SiCl2 100:1 Ph2SiCl2 85:1 Me2BBr 22:1 Bu2BOTf 32:1 MgBr2-OEt2 1:3

  18. Synthesis of Proprionate Motif Using Radicals Diastereoselective Mukaiyama and Free-Radical Hydrogen Transfer 1) Guindon, Y.; Houde, K.; Prévost, M.; Cardinal-David, B.; Landry, S.R.; Daoust, B.; Bencheqroun, M.; Guérin, B. J. Am. Chem. Soc. 2001, 123, 8496. 2) Guindon, Y.; Prévost, M.; Mochirian, P.; Guérin, B. Org. Lett. 2002, 4, 1019.

  19. Mukaiyama Reaction

  20. Tandem Mukaiyama/Hydrogen Transfer :Endocyclic Effect

  21. Tandem Mukaiyama/Hydrogen Transfer :Exocyclic Effect

  22. Advantages to the Mukaiyama/Hydrogen Transfer Reaction • E/Z stereochemistry of the enoxysilane is unimportant • With appropriate Lewis acid selection, all 4 proprionate units are accessible • Conditions were found for one-pot procedure • Iterative process was demonstrated with the synthesis of the polyproprionate motif : 1) Mochirian, P.; Cardinal-David, B.; Guérin, B.; Prévost, M.; Guindon, Y. Tet. Lett. 2002, 43, 7067. 2) Guindon, Y.; Brazeau, J-F.; Org. Lett. 2004, 4, 2599.

  23. Application to the Synthesis of Zincophorin • Guindon, Y.; Murtagh, L.; Caron, V.; Landry, S.R.; Jung, G.; • Bencheqroun, M.; Faucher, A.-M.; Guérin, B. • J. Org. Chem. 2001, 66, 5427. • 2) Guindon, Y.; Mochirian, P. Unpublished results. Bt = benzothiazole

  24. Can this Methodology be Applied to Other Free Radical Reactions? 76 % >100:1 75 % 1:16

  25. Synthesis of Tertiary and Quaternary Centers Cardinal-David, B.; Guérin, B.; Guindon, Y. J. Org. Chem. 2005, 70, 776.

  26. Tandem Mukaiyama and Allylation Reactions (Endocyclic Effect) 1. Cram chelate 2. Felkin-Ahn

  27. Future Work : 2,3-syn Products

  28. Summary – Substrate Control • Important factors for stereoselective radical reactions: allylic strain, dipole-dipole interactions, hyperconjugation, exocyclic effect and endocyclic effect • Combination of stereoselective Mukaiyama and radical reduction or allylation produced a powerful method to generate polyproprionates, tertiary and quaternary centers

  29. Chiral Auxiliaries 2,5-dimethylpyrrolidine : Porter and Giese (1991) 40-70 % Other auxiliaries :

  30. Oxazolidinone Chiral Auxiliary Yamamoto and co-workers (1994) Sibi and co-workers (1995)

  31. Selectivity with N-Enoyloxazolidinone

  32. Application to the Synthesis of (-)-Enterolactone Sibi, M.P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J.-x. J. Org. Chem.2002, 67, 1738.

  33. Camphorsultam Auxiliary and Radical-Ionic Reactions 61 %, 2:1 γ amino acid Ueda, M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem. Int. Ed.2005, 44, 2.

  34. Mechanism

  35. Summary : Chiral Auxiliaries • Chiral oxazolidinone are very useful for diastereoselective conjugate addition • Camphorsultam auxiliary used for radical addition/aldol type reaction • Importance of the Lewis acid

  36. Enantioselective Free Radical Reactions Porter and co-workers (1995) Wu, J.H.; Radinov, R.; Porter, N.A. J. Am. Chem. Soc.1995, 117, 11029.

  37. Mechanism-Propagation

  38. Enantioselective Conjugate Addition Sibi and Porter (1996) Sibi (1997) Sibi, M.P.; Ji, J.; Wu, J.H.; Gürtler, S.; Porter, N.A. J. Am. Chem. Soc. 1996, 118, 9200. Sibi, M.P.; Ji, J. J. Org. Chem. 1997, 62, 3800.

  39. Application : Synthesis of (+)-Ricciocarpin A Sibi, M.P.; He, L. Org. Lett. 2004, 6, 1749.

  40. Scope of the Conjugate Addition Sibi, M.P.; Chen, J. J. Am. Chem. Soc. 2001, 123, 9472. Sibi, M.P.; Zimmerman, J.; Rheault, T. Angew, Chem. Int. Ed. 2003, 42, 4521.

  41. Limitation of the Oxazolidinone Template No substituent

  42. New Imide Template for Conjugate Addition Sibi, M.P.; Petrovic, G.; Zimmerman, J. J. Am. Chem. Soc.2005, 127, 2390.

  43. Acyclic Radicals and Asymmetric Synthesis • Substrate control • Chiral auxiliary • Chiral lewis acids

  44. Acknowledgements • Prof. Louis Barriault • Nathalie Goulet • Guillaume Tessier • Steve Arns • Effie Sauer • Maxime Riou • Rachel Beingessner • Roch Lavigne • Patrick Ang • Louis Morency • Mélina Girardin • Maude Boulanger • Jeff Warrington • Lise-Anne Prescott • Josée-Lyne Ethier • Tushar Tangri Dr. Irina Denissova and Philippe Mochirian From Professor Yvan Guindon’s group

  45. Ester substituted radicals and allylic strain Giese, B.; Bulliard, M.; Zeitz, H.-G. Synlett1991, 425.

  46. Dipole-dipole interactions are also important

  47. Hyperconjugation and selectivity

  48. Diastereoselective Radical Addition/Allylation Sibi, M.P.; Ji, J. J. Org. Chem. 1996, 61, 6090.

  49. Mechanism

More Related