html5-img
1 / 104

V . Quantum Flavour Dynamics: QFD

Particle Physics I Introduction, history & overview (2) Concepts (5) : Units (h=c=1) Relativistic kinematics Cross section, lifetime, decay width, … Symmetries (quark model, …) Quantum Electro Dynamics : QED (7) Spin 0 electrodynamics (Klein-Gordon)

wardah
Download Presentation

V . Quantum Flavour Dynamics: QFD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Particle Physics I • Introduction, history & overview (2) • Concepts (5): • Units (h=c=1) • Relativistic kinematics • Cross section, lifetime, decay width, … • Symmetries (quark model, …) • Quantum Electro Dynamics: QED (7) • Spin 0 electrodynamics (Klein-Gordon) • Spin ½ electrodynamics (Dirac) • Experimental highlights: “g-2”, ee, … • Particle Physics II • Quantum Chromo Dynamics: QCD (4) • Colour concept and partons • High q2 strong interaction • Structure functions • Experimental highlights: s, ep, … • Quantum Flavour Dynamics: QFD (6) • Low q2 weak interaction • High q2 weak interaction • Experimental highlights: LEP • Origin of matter? (4) • K0-K0, oscillations • B0-B0 oscillations • Neutrino oscillations • Origin of mass? (2) • Symmetry breaking • Higgs particle: in ee and in pp SB GR File on “paling”: z66/PowerPoint/ED_Master/QFD.ppt V. Quantum Flavour Dynamics: QFD Part of the “Particle and Astroparticle Physics” Master’s Curriculum

  2. Weak interaction: Phenomenology Examples • Long lifetimes (1010-103 s) compared to QED (1018) and QCD (1023) • Differences ++ (99.99%) and +e+e (0.01%) branching fractions • Conserved lepton number? Le, L en L (neutrino-oscillations violate this) • Quark flavor number not conserved! • Parity violation!

  3. Leptonic processes • Between leptons • Semi-leptonic processes • Between leptons and quarks • Non-leptonic (hadronic) processes • Between quarks Weak interaction: Terminology Experimentally: weak interaction is universal, I.e. all processes described by a unique coupling constant: GF

  4. The weak interaction at low q2 • Fermi theory of the weak interaction • Parity violation  the “correct” vertex factor • Helicity versus handedness and useful trace theorems Experiment

  5. Fermi theory

  6. QED analogy: Current-current interaction Weak interaction: mimick QED! q=pA-pCpD-pB

  7. q=0 A C QED amplitude for AB  CD: B D q=1 “charged neutral current” A C Fermi theory for AB  CD: pe  ne n  pee  e e B D E.g.: p  q=+1 q=1 q=+1 p n n  e e e e q=1 q=1 e e q=+1 Fermi-theory (typically -decay)

  8. Fermi’s choice for the weak interaction vertex was just one of the 16 possibilities consistent with the requirement of Lorentz invariance. jAC Lorentz invariant currents A C B D jBD e-e angle e recoil energy p n e relativistic non relativistic Checking all possible interaction terms! • The correct expression for the weak current: • -decay experiments (1932-1956) • parity violation in weak interactions Lee-Yang (theory) and Wu (experiment) Note: today with availability of -beams it would have been “easier” to figure out

  9. pe  ne In het algemeen zitten p en n in kernen en hun beweging is niet relativistisch. Afhankelijk van de Lorentz struktuur zijn slechts enkele termen  nul! jpn p n Ne  N*e pn-deel amplitude +1 +1 Fermi overgang e e +1 +1 je Opmerking: correcter zou zijn om N  N* + e+e te behandelen (met v-spinors i.p.v. u-spinors) pn part -decay: the weak interaction vertex

  10. N* N e e pn part Select specific -decay channels • Onderscheid overgangen met als operator: • “1”:Fermi overgangen (scalar + vector) • “”:Gamov-Teller overgangen (axiaal-vector + tensor) • Didaktisch zijn de “beste” overgangen: • Fermi: • Gamov-teller: Fermi-decays Gamov/Teller-decays

  11. e e e e “Fermi” overgangen N N N N N* N* N* N* e+ e+ Vector Tensor e+ Scalar Axiaal-vector e+ “Gamov-Teller” overgangen De tensor interaktie mogen jullie doen! ee part Het ee-deel van de amplitude

  12. Experimenteel: de juiste zwakke stroom: jpn p n De “V-A” kombinatie is niet invariantonder spiegelingen! Immers: e e je Want: The result: V-A interaction

  13. Parity violation

  14. B asymmetrie in e hoekverdeling? spiegel e + e e 60Co 60Ni* e • Sketch and photograph of apparatus used to study beta decay in polarized cobalt-60 nuclei. The specimen, a cerium magnesium nitrate crystal containing a thin surface layer of radioactive cobalt-60, was supported in a cerium magnesium nitrate housing within an evacuated glass vessel (lower half of photograph). An anthracene crystal about 2 cm above the cobalt-60 source served as a scintillation counter for beta-ray detection. Lucite rod (upper half of photograph) transmitted flashes from the counter to a photomultiplier (not shown). Magnet on either side of the specimen was used to cool it to approximately 0.003 K by adiabatic demagnetization. Inductance coil is part of a magnetic thermometer for determining specimen temperature. + C.S. Wu: 60Co  60Ni* + e e Experiment!

  15. Helicity and handedness

  16. Effect 5 op u- en v-spinors: Helicity  left/right-handedness Links/rechts-handigheid en heliciteit relaties voor m0!

  17. Zwakke wisselwerking werkt tussen: • Linkshandige deeltjes • Rechtshandige anti-deeltjes • Neutrino’s met m0: • Slechts zwakke wisselwerking • Slechts van belang: L en R jpn jpn p n p n Verder: W e e je je e e e e+ e e e e e e Experiment! neutrino’s en W bosonen

  18. zwakke interactie W e e e.m. interactie  e e Want: Zwak  e.m. wisselwerking • Dus: • e.m. interactie: links- & rechtshandige deeltjes & anti-deeltjes • zwakke interactie: linkshandige deeltjes & rechtshandige anti-deeltjes

  19. And ……… a few more traces Omdat in de zwakke wisselwerking hier en daar een 5 voorkomt, is het handig een paar extra spoor theorema’s af te leiden voor later gebruik:

  20. The weak interaction at low q2 • Muon- & tau-decay • Neutron- & nuclear beta-decay • Pion- & kaon-decay Experiment Experiment Experiment

  21. The decay of the muon

  22.  k W  k’ p e p’ e The decay of the muon () Calculation: tedious Rewards: precision GF determination nice experiment!

  23.  k  W p k’ Kinematica: p’ e e Met de gebruikelijke Feynman regels wordt het matrix element (amplitude): De generieke uitdrukking voor de vervalsbreedte: • Resterend “routine” werk: • sommeren en middelen over de spin toestanden • vinden van juiste trace theorema • integreren over de e(p’) + e(k’) + (k) fase ruimte -decay

  24. Let op: sommeer ook doodleuk over de neutrino spins! Extra termen leveren niets! Spin:  0: PL  PR  0: oneven #  Kinematica en me20: Dan wordt de amplitude: -verval: trace reductie

  25. De faseruimte (3 deeltjes) is een 9-dimensionale integraal: Uit-integreren -functie levert 6-dimensionale integraal Relevante variabelen: EeE’, E’ en openingshoek  tussen electron en anti-electron neutrino. 3-dimensionale integraal. De cos integratie kan gedaan worden m.b.v.: Blijft over: -verval: faseruimte

  26. M/2 M/2 M/2 Experimenteel alleen verstrooide electron te meten. Dus doe de ’ (en E’) integratie: integratie gebied ’ Maximum energie e , e en : M/2 Minimale energie deeltjes paar: M/2 M/2-E’  E’  d/dE’ -verval: wat kan je meten?

  27. M/253 MeV -verval: experimentele resultaten!

  28. m- elektron < 2.7 eV m- tau < 18.2 MeV Muon verval berekening: Ee spectrum • -neutrino massa te bepalen uit: • multi-prong vervallen: •     + •     KK+ •     KK++ M/253 MeV Eindpunt N  N*+ eegevoelig emassa! Methode: zichtbare invariante massa -massa Neutrino massa metingen m- muon < 170 keV

  29. The decay of the tau

  30.  k W  k’ p e p’ e The decay of the tau () Calculation: just copy! Rewards: lepton universality nice experiment!

  31. Berekening voor  kan tevens gebruikt worden voor berekening levensduur -lepton. Enige extra complicatie: -lepton heeft verschilende vervalskanalen. Levensduur? -massa: verbeterde meting e+e @ threshold! m1.778 GeV Lepton universality: -decay

  32. Neutron- & -decay

  33. p k n W k’ p e p’ e The decay of the neutron Calculation: really tedious (me  mn  mp) Rewards: appreciation of calculation He/H abundance in Universe

  34. Om toch iets van te laten zien, beschouw ik: 0+ 0+ overgangen, b.v. Ji=Jf V~ Nuclear -decay • Eigenlijk heel vervelend: • kern effecten • N  N’ + ee • n p + ee • d u + ee • B.v.: 14O  14N* + e+e • pp  pn of np • alleen  • kern deel niet relativistisch

  35. Afmeting kern ~ 1 fm Golflengte leptonen (E  MeV):   200 fm/p[MeV] >> 1 fm Dus (middel p-spin): 2 pp  pn of np En de amplitude wordt dus: Vervolg -verval (vervolg)

  36. Vervolg -verval (slot) ee deel gebruik (AB+C+D) formule: v.b.: E  1.8 MeV   256 s  GF  1.1710-5 GeV-2

  37. Pion- & kaon-decay

  38. l  ; amplitude volgt uit Lorentz invariantie: l Dus: symmetrisch  anti-symmetrisch  Pion () verval

  39. Oftewel: En met formule voor (AB+C): Expliciete waarde voor  vereist de onbekende f (toeval!) Zonder aannamen: Waarom () >> (ee)?  l l Anti-neutrino: rechtshandig  heliciteit +1 Dus gewoon behoud van draai-impulsmoment Lepton: linkshandig  heliciteit 1 Pion () verval (slot)

  40. l K K ; amplitude weer uit Lorentz invariantie l s K Pion: Zonder aannamen: Zonder aannamen: Kaon: K K K K 2.3 2.3 Kaon (K) verval 105 105

  41. e + e+ Determine for each of these possibilities the fraction of: Exercise: +  e+e and +  + for different couplings

  42. The weak interaction at low q2 • Neutrino beams (+ nice experimental proposal) • Charged weak current interaction • Neutral weak current interaction • “Exact” expressions for the neutral current couplings Experiment Experiment Experiment

  43. Neutrino beams

  44. 192 GeV R 84 GeV E 50 100 150 200  K CDHS detector  Neutrino beam (experiment) 

  45. Generatie neutrino bundel via K of verval  cm K - c.m. frame En dus: Van cm naar lab  K- lab Lab-frame - Voorbeeld; pK=p=200 GeV, m=139 MeV, mK=494 MeV: GeV GeV Neutrino beam (theory)

  46. 1962: -bundel op een target: wel:  + p   + X niet:  + p  e + X  90’s: -bundel op een target: wel:  + p   + X niet:  + p   + X  CHORUS • “oscillatie” experimenten: • CHORUS • NOMAD  productie in  bundel? tot nu toe: niet gevonden Zijn e, en  werkelijk verschillend?

  47. You like to collect as many as possible pions (and kaons) in your decay tunnel in order to maximize the neutrino beam intensity. A direct drawback is of course that you must allow a broad spectrum of initial pion (and kaon) energies. This is called a “broad-band” -beam as opposed to a monochromatic -beam. A monochromatic intense -beam can be realized via an “off-axis” configuration! CERN:   R L Can you find angle   R/L for which neutrino energy becomes independent of beam energy? Recent NIKHEF seminar (F. Dydak/28-feb-2003)

  48. cern italy Simple idea  nice experimental proposal! • In c.m. E  31 MeV in ++ • L  1300 km • R  45 km (1-2 km deep in sea) •  30  E  4.2 GeV  E  3031 = 900 MeV

  49. P() 1.0 Neutrino oscillations: mass difference P(e) via the disappearance of a  signal (N  X) (keep –beam energy below N  X threshold) L 0.0 via the appearance of a e signal (eN  eX) (keep –beam energy below N  X threshold) Neutrino oscillations: mixing angle Cross section measurements of the above processes Fantastic physics programme(more details inCP-violation section)

  50. The charged weak current

More Related