1 / 45

12 maart 2012 Frank Linde, Science Café Nijmegen

12 maart 2012 Frank Linde, Science Café Nijmegen. Lang geleden …. Empedocles. Plato. Aristoteles. Leucippus. Democritus. Mendeleev’s periodiek systeem. Het Periodiek Systeem. nummering: kernlading. Nobel gasses Not part of the original Mendeleev periodic table.

victor-rich
Download Presentation

12 maart 2012 Frank Linde, Science Café Nijmegen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 12 maart 2012 Frank Linde, Science Café Nijmegen

  2. Lang geleden … Empedocles Plato Aristoteles Leucippus Democritus

  3. Mendeleev’s periodiek systeem Het Periodiek Systeem nummering: kernlading Nobel gasses Not part of the original Mendeleev periodic table

  4. Quark model: Gell-mann (1964)

  5. Het elektron Massa:0.000000000000000000000000000910938188gram Elektrische lading:0.00000000000000000016021765Coulomb Gemiddelde levensduur: (oneindig)seconden ”Spin”: ½

  6. Het neutrino Massa: <0.0000000000000000000000000000000039gram Elektrische lading: 0Coulomb Gemiddelde levensduur: (oneindig)seconden ”Spin”: ½

  7. 2-deeltjes “verval”

  8. +e+e e+ + ++ +

  9. e 

  10. e   -massa  0 2000 A neutrino experiment at Fermilab has seen the first direct evidence for the tau neutrino, the most elusive of the 12 particles that make up the Standard Model of the fundamental structure of matter.

  11. e e+  +  + ++ materie  e   e  XX’ antimaterie Leptonen=lichte deeltjes I II III

  12. 41H4He+2e++2e 2e+energie zijn’szeldzaam?

  13. supernova SN1987A neutrino’s

  14. supernova SN1987A neutrino’s

  15. Neutrino oscillaties

  16. Neutrino oscillaties

  17. Neutrino oscillaties

  18. afstand snelheid = tijd CNGSCERN Neutrino’s to Gran Sasso 0.0025 s = 2.5 ms = 2,500,000 ns

  19. p  CERN

  20. productie ,K, … • verval •   K   bundel  CERN

  21. ~10,000 ns ~10,000 ns Tijdprofiel “-pulse” at CERN protons  , K, …   protons  , K, …  

  22. OPERA LNGS: Laboratori Nazionali del Gran Sasso

  23. OPERA detector         -bundel

  24. protons on target 100,000,000,000,000,000,000 “POT” Eén OPERA event ~100,000,000,000,000,000,000 Gran Sasso ~16,000 -interacties

  25. Eén OPERA event

  26. De meting Afstand CERN-OPERA: 731278.00.2 meter Tijdverschil CERN-OPERA: 0.00000001 s = 10 ns stat: 6.9 ns & sys: 7.4 ns

  27. “nul” meting “½” meting “1” meting 0 km 0 km 0 km 365 km 365 km 365 km 730 km 730 km 730 km “de” meting Veel beter zou zijn …

  28. vergelijk gemeten & voorspelde tijdspectra shift correcties  6010 ns sneller dan het licht! Het resultaat

  29. Vervolgmetingen BOREXINO ICARUS

  30. Hoe verder? en ▪▪▪ ▪ ▪ ▪ check de calibraties Japan U.S.A. “NuMi” 720 km “T2K” 295 km

  31. Intermezzo: Einstein & relativiteit Reizen in de toekomst kan “gewoon”!

  32. 2L c t = L ‘tik’ van de lichtklok in rust: t ‘heen-en-weer’ periode t van het licht: c=299792458 m/s (exact) waarnemer in rust

  33. c=299792458 m/s (exact) v [m/s] L t’ == t 1v2/c2 2L c2v2 ½vt’ 2L2+(½vt’)2 c vt’ t’ = ‘heen-en-weer’ periode t’ van het licht: ‘tik’ van de lichtklok in beweging: t’ (ct’)2 = 4L2+(vt’)2 t bewegend klokje tikt langzamer! waarnemer beweegt met snelheid v

  34. Breaking news (2 weeks ago!) The OPERA collaboration has informed its funding agencies and host laboratories that it has identified two possible effects that could have an influence on its neutrino timing measurement. These both require further tests with a short pulsed beam. If confirmed, one would increase the size of the measured effect, the other would diminish it. The first possible effect concerns an oscillator used to provide the time stamps for GPS synchronizations. It could have led to an overestimate of the neutrino's time of flight. The second concerns the optical fibre connector that brings the external GPS signal to the OPERA master clock, which may not have been functioning correctly when the measurements were taken. If this is the case, it could have led to an underestimate of the time of flight of the neutrinos. The potential extent of these two effects is being studied by the OPERA collaboration. New measurements with short pulsed beams are scheduled for May.

  35. Breaking news (last week!) *******************************************Source: Daya Bay Reactor Neutrino ExperimentContent: Press ReleaseDate Issued: 8 March 2012*******************************************Announcing the First Results from Daya Bay: Discovery of a New Kind of Neutrino TransformationBEIJING; BERKELEY, CA; and UPTON, NY - The Daya Bay Reactor Neutrino Experiment, a multinational collaboration operating in the south of China, today reported the first results of its search for the last, most elusive piece of a long-standing puzzle: how is it that neutrinos can appear to vanish as they travel?The surprising answer opens a gateway to a new understanding of fundamental physics and may eventually solve the riddle of why there is far more ordinary matter than antimatter in the universe today.

  36. Implicatie: oorzaakgevolg

More Related