Scholarly artistic geometric scrapbook
1 / 17

Scholarly Artistic Geometric Scrapbook - PowerPoint PPT Presentation

  • Uploaded on

Scholarly Artistic Geometric Scrapbook. Amanda Austin 7 th Hour 4 January 2012 . Table of Contents. 3-Parallel Lines 4-Two Congruent Objects 5-Vertical Angles 6-Perpendicular Lines 7-Intersecting Lines 8-Supplementary Angles 9-Corresponding Angles. 10-Adjacent 11-Obtuse Angle

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about ' Scholarly Artistic Geometric Scrapbook' - vera

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Scholarly artistic geometric scrapbook

Scholarly Artistic Geometric Scrapbook

Amanda Austin

7th Hour

4 January 2012

Table of contents
Table of Contents

  • 3-Parallel Lines

  • 4-Two Congruent Objects

  • 5-Vertical Angles

  • 6-Perpendicular Lines

  • 7-Intersecting Lines

  • 8-Supplementary Angles

  • 9-Corresponding Angles

  • 10-Adjacent

  • 11-Obtuse Angle

  • 12-Regular Polygon

  • 13-Vertex Angle

  • 14-Isosceles Triangle

  • 15-Right Angle

  • 16-Hypotenuse

  • 17-Pythgorus

Parallel lines
Parallel Lines

  • Two lines are parallel if they lie in the same plane and do not intersect.

  • If the slats in the blinds were not opened parallel we could not see Johns beautiful eyes looking into the principals office window.

Two congruent objects
Two Congruent Objects

  • Two objects that have the same measurements for corresponding parts.

  • If the desks weren't congruent they would look different and then they wouldn’t be uniform there for the school would not be as stylish.

Vertical angles
Vertical Angles

  • Two angles who sides from two pairs of opposite rays.

  • If Troy did not have his hands

    up and his feet spread

    while he was dancing in

    High School Musical 2 he

    might have fallen (and he

    would not have looked as cool).

Perpendicular lines
Perpendicular Lines

  • Lines that intersect and form right angles.

  • If the lines were not perpendicular the Hogwart’s School of Witchcraft and Wizardry crest would look disorderly and off balance and there-

    for no young witches

    and wizards would want

    to go there.

Intersecting lines
Intersecting Lines

  • Two or more lines that meet at a common point.

  • If the lines in Harry Potters scar did not intersect the kids at school might not have known who Harry was on the first day.

Supplementary angles
Supplementary Angles

  • Two angles are supplementary if the sum of their measures is 180.

  • If the desk and Ms. Halseys angles did not equal 180 she would slide off the desk or she would be crooked and that would be silly.

Corresponding angles
Corresponding Angles

  • Lie on the same side of the transversal and in corresponding positions relative to l and m.

  • If there were not corresponding angles there would not be a consistent place to put the locks on the lockers, therefore they would just be cubbies.


  • Two things lying next to each other.

Obtuse angle
Obtuse Angle

  • An angle which measurements are greater than 90 degrees.

Regular polygon
Regular Polygon

  • A polygon that is both equilateral and equiangular, its center in the center of the circumscribed circle.

Vertex angle
Vertex Angle

  • The angle between two congruent legs.

Isosceles triangle
Isosceles Triangle

  • Triangle that has, at least, two congruent sides.

Right triangle
Right Triangle

  • A triangle that contains one right angle.


  • The side of a right triangle opposite the right angle.

Duke in his school dorm


  • Greek philosopher, mathematician, and religious reformer.