1 / 100

Introduction

Introduction. AAE 450 – Spring 2004 Project HOMER Humans Orbiting Mars for Exploration and Research. Brady Kalb. Homer Heavy Lift Launch Vehicle. 2 nd Stage. 3 rd Stage. 57 m. 89 m. 44 m. Chris Ulrich , Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier.

urbano
Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction AAE 450 – Spring 2004 Project HOMER Humans Orbiting Mars for Exploration and Research Brady Kalb Spring 2004 AAE450: Slide 1

  2. Homer Heavy Lift Launch Vehicle 2nd Stage 3rd Stage 57 m 89 m 44 m Chris Ulrich, Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier Spring 2004 AAE450: Slide 2

  3. HOMER LAUNCH VEHICLES HEAVY LIFT LAUNCH VEHICLE MASS BREAKDOWN Chris Ulrich, Chris Krukowski, Frank Hankins, Nikolaus Ladisch, Marina Mazur, Matt Maier Spring 2004 AAE450: Slide 3

  4. CRV: Aerodynamic Stability Equation used in Trim line calculations: Aft (0) Spring 2004 AAE450: Slide 4 Rebecca Karnes

  5. Rocket Structure • Launch Escape Motor • Pitch Control Motor • Tower Jettison Motor Launch Escape Tower Boost Protective Cover CRV: LES Sizing and Components Heather Dunn Spring 2004 AAE450: Slide 5

  6. CRV: LES and Parachute Mass Launch Escape System Parachute Recovery System Heather Dunn Spring 2004 AAE450: Slide 6

  7. Transport Vehicle Thrusting Mode after leaving Earth Devin Fitting, Dave Goedtel, Ben Toleman, Debanik Barua Spring 2004 AAE450: Slide 7

  8. Transport Vehicle Storage view with airlock Devin Fitting, Dave Goedtel, Ben Toleman, Debanik Barua Spring 2004 AAE450: Slide 8

  9. Transport Vehicle • Aerocapture Mode • Radiators retracted • Comm. Antenna Retracted • Vehicle collapsed Spring 2004 AAE450: Slide 9

  10. Human Factor Mass Summary Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 10

  11. Major Components Contained on the First Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 11

  12. Major Components Contained on the Second Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 12

  13. Major Components Contained on the Third Floor Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 13

  14. Stored Components Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 14

  15. Stored Components (Continued) Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 15

  16. Stored Components Major Components Contained on the Fourth Floor Other Components Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 16

  17. Air Subsystem Air Subsystem Design Values Atmosphere Composition and Pressure Air Subsystem Breakdown Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 17

  18. Waste & Water Subsystem Water Mass for Mission WCS Specifications Daily Water Budget WPA Specifications Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 18

  19. Artificial Gravity Gravity Gradient relative to 9.81 m/s2 Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 19

  20. Volume Comparisons Pat Nelson, Steve Blaske, Theresa McGuigan, Wade McMillan Spring 2004 AAE450: Slide 20

  21. 10.084 m 2.58 m 10.5 m Habitat Module Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 21

  22. Doors for CRV/Landers 10.084 m 10.5 m Storage Module Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 22

  23. Effect of Thickness on Hoop Stress Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 23

  24. Buckling Analysis Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 24

  25. 2.00 m 1.00 m R 0.30 m R 0.20 m 2.58 m 0.10 m 0.02 m R 0.20 m 0.75 m 1.50 m Column Configuration and FEM Analysis Max. von Mises Stress = 9.65×107 N/m2 Max. Principal Stress = 9.74×107 N/m2 Max. Displacement = 1.36×10-4 m Mass = 916.34 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 25

  26. Brace Configuration and FEM Analysis Max. von Mises Stress = 3.61×107 N/m2 Max. Principal Stress = 3.72×107 N/m2 Max. Displacement = 6.25×10-4 m Mass = 65.80 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 26

  27. Floor Configuration and FEM Analysis Max. von Mises Stress = 9.52×106 N/m2 Max. Principal Stress = 9.38×106 N/m2 Max. Displacement = 1.40×10-4 m Mass = 9.76×103 kg Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 27

  28. CRV and Lander Holders Configuration Lander Holder CRV Holder Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 28

  29. CRV and Lander Holders Analysis Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 29

  30. Margin of Safety (MS) • Surface Crack Propagation • Assumptions: - Leak before break - a/c = 1.0 - a/t = 1.0 - a/b = 0.1 Surface Crack Propagation (Fig 8.3fromFundamentals of Structural Integrity byAlten F. Grandt) K = 36.26 MPa-m1/2 for Al 2219-T851 Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 30

  31. Hoytube Design • 6 Hoytubes within the bundle • 5 primary lines per Hoytube • Most of load bearing capability • 8 Secondary lines per Hoytube • Initially slack, load bearing in case of damaged primary lines • High survivability • 100 % > 70 years Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 31

  32. Component Masses Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 32

  33. Layering System Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 33

  34. 4.38 m Stringer 9.31 m Ring/Frame Rigid Body Model Debanik Barua, Masaaki Atsuta, Jamie Krakover, Rachel Malashock, George Mseis, Daniel Nakaima Spring 2004 AAE450: Slide 34

  35. Power Subsystems Breakdown (Primary Power) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 35

  36. Power Cable Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 36

  37. Power Cable Mass Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 37

  38. Fuel Cell System Mass Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 38

  39. Power Subsystems Breakdown (Secondary Power) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 39

  40. Breakdown of Fuel Cell System(Duration and Power Supplied) Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 40

  41. Mass Breakdown of Power Distribution System Ryan Spalding, Reuben Schuff, Justin Tucker Spring 2004 AAE450: Slide 41

  42. Energy Balance at Outter Insulation Surface: Energy Balance at Inner Insulation Surface: Melanie Silosky Robert Manning , Matthew Branson, Lucia Capdevila, Alessandro Ianniello, Power Loss in Tether Spring 2004 AAE450: Slide 42

  43. T1 = 130.8 oC H2O vapor 380 kW From Engines 380 kW HX T2 = 130.8 oC P H2O liquid T2 = 4.4 oC P 33 kW HX T1 = 83 oC T2 = 4.4 oC P 33 kW HX T1 = 83 oC Cooling Loop Design • Propulsion Module • Two phase H2O loop • Mass flow rate = 0.04 kg/s • Pressure = 2 atm • Habitat Module • Single phase liquid NH3 loop • Mass flow rate = 0.08 kg/s • Supply temperature = 4.4 oC Spring 2004 AAE450: Slide 43

  44. 3.81 mm heat pipe 0.58 mm fin 10 cm Panel Design • Panel Design • Beryllium fins (k = 220 W/m-K) • Z-93 white paint coating (e = 0.92) Spring 2004 AAE450: Slide 44

  45. Radiator Mass Breakdown Spring 2004 AAE450: Slide 45

  46. Timeline • Early November 2009 – 500 km circular orbit at 23.45º inclination • Late November 2009 – Finite burn for trans-Mars injection, Δv = 4.50 km/s • Mid January 2010 – Tether deployed, spin-up maneuver, ω = 5 rpm • Early June 2010 – Spin-down maneuver, EVA performed, prepare for aerocapture • Mid June 2010 – Mars atmospheric probes released • Mid July 2010 – Aerocapture into 14 day elliptic orbit around Mars, e = 0.97 • Late July 2010 – First Mars Lander released, landing at 1.98ºS, 353.82ºE • Early August 2010 – Second Mars Lander released, landing at 8.92ºN, 205.21ºW • Mid August 2010 – Apo-twist maneuver • Mid September 2010 – Spin-up maneuver, simulate Mars gravity Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 46

  47. Mars Aerocapture: Capturing the Corridor • Vehicle Characteristics Unchanged • Entry Corridor Density Uncertainties • % Cases Captured: 54 Total Nominal Flight Path Angles [LU, LD] [-9.43º, -8.1065º] Ellipsled Image taken from R. Whitley and C. Cerimele Spring 2004 AAE450: Slide 47 Ryan Whitley

  48. Spin-up/Spin-down Specifics Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 48

  49. Hall Effect Thruster Placement Allison Bahnsen, Daniel Grebow, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 49

  50. Trans-Earth Injection: Finite Burn • Early November 2009 – Initial Earth parking orbit. • Late November 2009 – Trans-Mars injection, 1.34 hour burn time. – Impulsive: ΔV = 3.55 km/s. – Finite: ΔV = 4.50 km/s. Daniel Grebow, Allison Bahnsen, Kelli Hsieh, Steven Lambert, Joseph Paunicka, Brian Pramann Spring 2004 AAE450: Slide 50

More Related