1 / 16

AN INTRODUCTION TO TRANSITION METAL COMPLEXES

AN INTRODUCTION TO TRANSITION METAL COMPLEXES. 2008 SPECIFICATIONS. KNOCKHARDY PUBLISHING. STABILITY CONSTANTS. Definition The stability constant, K stab , of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions.

ura
Download Presentation

AN INTRODUCTION TO TRANSITION METAL COMPLEXES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AN INTRODUCTION TO TRANSITION METAL COMPLEXES 2008 SPECIFICATIONS KNOCKHARDY PUBLISHING

  2. STABILITY CONSTANTS Definition The stability constant, Kstab, of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions.

  3. STABILITY CONSTANTS Definition The stability constant, Kstab, of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions. In the reaction [M(H2O)6]2+(aq) + 6X¯(aq) [MX6]4–(aq) + 6H2O(l)

  4. STABILITY CONSTANTS Definition The stability constant, Kstab, of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions. In the reaction [M(H2O)6]2+(aq) + 6X¯(aq) [MX6]4–(aq) + 6H2O(l) the expression for the stability constant is Kstab = [ [MX64–](aq) ] [ [M(H2O)6]2+(aq) ] [ X¯(aq) ]6

  5. STABILITY CONSTANTS Definition The stability constant, Kstab, of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions. In the reaction [M(H2O)6]2+(aq) + 6X¯(aq) [MX6]4–(aq) + 6H2O(l) the expression for the stability constant is Kstab = [ [MX64–](aq) ] [ [M(H2O)6]2+(aq) ] [ X¯(aq) ]6 The concentration of X¯(aq) appears to the power of 6 because there are six of the ions in the equation. Note that the water isn’t included; it is in such overwhelming quantity that its concentration can be regarded as ‘constant’.

  6. STABILITY CONSTANTS Because ligand exchange involves a series of equilibria, each step in the process has a different stability constant… Kstab / dm3 mol-1 [Co(H2O)6]2+(aq) + NH3(aq) [Co(NH3)(H2O)5]2+(aq) + H2O(l) K1 = 1.02 x 10-2 [Co(NH3)(H2O)5]2+(aq) + NH3(aq) [Co(NH3)2(H2O)4]2+(aq) + H2O(l) K2 = 3.09 x 10-2 [Co(NH3)2(H2O)4]2+(aq) + NH3(aq) [Co(NH3)3(H2O)3]2+(aq) + H2O(l) K3 = 1.17 x 10-1 [Co(NH3)3(H2O)3]2+(aq) + NH3(aq) [Co(NH3)4(H2O)2]2+(aq) + H2O(l) K4 = 2.29 x 10-1 [Co(NH3)4(H2O)2]2+(aq) + NH3(aq) [Co(NH3)5(H2O)]2+(aq) + H2O(l) K5 = 8.70 x 10-1 etc

  7. STABILITY CONSTANTS Because ligand exchange involves a series of equilibria, each step in the process has a different stability constant… Kstab / dm3 mol-1 [Co(H2O)6]2+(aq) + NH3(aq) [Co(NH3)(H2O)5]2+(aq) + H2O(l) K1 = 1.02 x 10-2 [Co(NH3)(H2O)5]2+(aq) + NH3(aq) [Co(NH3)2(H2O)4]2+(aq) + H2O(l) K2 = 3.09 x 10-2 [Co(NH3)2(H2O)4]2+(aq) + NH3(aq) [Co(NH3)3(H2O)3]2+(aq) + H2O(l) K3 = 1.17 x 10-1 [Co(NH3)3(H2O)3]2+(aq) + NH3(aq) [Co(NH3)4(H2O)2]2+(aq) + H2O(l) K4 = 2.29 x 10-1 [Co(NH3)4(H2O)2]2+(aq) + NH3(aq) [Co(NH3)5(H2O)]2+(aq) + H2O(l) K5 = 8.70 x 10-1 etc The overall stability constant is simply the equilibrium constant for the total reaction. It is found by multiplying the individual stability constants... k1 x k2 x k3 x k4 ... etc Kstab or pKstab? For an easier comparison, the expression pKstab is often used… pKstab = -log10Kstab

  8. STABILITY CONSTANTS Because ligand exchange involves a series of equilibria, each step in the process has a different stability constant… Kstab / dm3 mol-1 [Co(H2O)6]2+(aq) + NH3(aq) [Co(NH3)(H2O)5]2+(aq) + H2O(l) K1 = 1.02 x 10-2 [Co(NH3)(H2O)5]2+(aq) + NH3(aq) [Co(NH3)2(H2O)4]2+(aq) + H2O(l) K2 = 3.09 x 10-2 [Co(NH3)2(H2O)4]2+(aq) + NH3(aq) [Co(NH3)3(H2O)3]2+(aq) + H2O(l) K3 = 1.17 x 10-1 [Co(NH3)3(H2O)3]2+(aq) + NH3(aq) [Co(NH3)4(H2O)2]2+(aq) + H2O(l) K4 = 2.29 x 10-1 [Co(NH3)4(H2O)2]2+(aq) + NH3(aq) [Co(NH3)5(H2O)]2+(aq) + H2O(l) K5 = 8.70 x 10-1 etc Summary • The larger the stability constant, the further the reaction lies to the right • Complex ions with large stability constants are more stable • Stability constants are often given as pKstab • Complex ions with smaller pKstab values are more stable

  9. REACTION TYPES The examples aim to show typical properties of transition metals and their compounds. One typical properties of transition elements is their ability to form complex ions. Complex ions consist of a central metal ion surrounded by co-ordinated ions or molecules known as ligands. This can lead to changes in ... • colour • co-ordination number • shape • stability to oxidation or reduction Reaction types ACID-BASE LIGAND SUBSTITUTION PRECIPITATION REDOX A-B LS Ppt RED OX REDOX

  10. REACTION TYPES The examples aim to show typical properties of transition metals and their compounds. LOOKFOR... substitution reactions of complex ions variation in oxidation state of transition metals the effect of ligands on co-ordination number and shape increased acidity of M3+ over M2+ due to the increased charge density differences in reactivity of M3+ and M2+ ions with OH¯ and NH3 the reason why M3+ ions don’t form carbonates amphoteric character in some metal hydroxides (Al3+ and Cr3+) the effect a ligand has on the stability of a particular oxidation state

  11. REACTIONS OF COBALT(II) CO32-[Co(H2O)6]2+(aq) + CO32-(aq) ——> CoCO3(s) + 6H2O(l) mauve ppt. Hexaaqua ions of metals with charge 2+ precipitate a carbonate but heaxaaqua ions with a 3+ charge don’t. Cl¯[Co(H2O)6]2+(aq) + 4Cl¯(aq) ——> [CoCl4]2-(aq) + 6H2O(l)pink, octahedral blue,tetrahedral • Cl¯ ligands are larger than H2O • Cl¯ ligands are negatively charged - H2O ligands are neutral • the complex is more stable if tetrahedral - less repulsion between ligands • adding excess water reverses the reaction Ppt LS

  12. REACTIONS OF COPPER(II) Cl¯[Cu(H2O)6]2+(aq) + 4Cl¯(aq) ——> [CuCl4]2-(aq) + 6H2O(l)yellow, tetrahedral • Cl¯ ligands are larger than H2O and are charged • the complex is more stable if the shape changes to tetrahedral • adding excess water reverses the reaction I¯ 2Cu2+(aq) + 4I¯(aq) ——> 2CuI(s) + I2(aq) off - white ppt. • a redox reaction • used in the volumetric analysis of copper using sodium thiosulphate LS REDOX

  13. REACTIONS OF MANGANESE(VII) • in its highest oxidation state therefore Mn(VII) will be an oxidising agent • occurs in the purple, tetraoxomanganate(VII) (permanganate) ion (MnO4¯) • acts as an oxidising agent in acidic or alkaline solution acidicMnO4¯(aq) + 8H+(aq) + 5e¯ ——> Mn2+(aq) + 4H2O(l) E° = + 1.52 V N.B. Acidify with dilute H2SO4 NOT dilute HCl alkalineMnO4¯(aq) + 2H2O(l) + 3e¯ ——> MnO2(s) + 4OH¯(aq) E° = + 0.59 V

  14. VOLUMETRIC USE OF MANGANATE(VII) Potassium manganate(VII) in acidic (H2SO4) solution is extremely useful for carrying out redox volumetric analysis. MnO4¯(aq) + 8H+(aq) + 5e¯ ——> Mn2+(aq) + 4H2O(l) E° = + 1.52 V It must be acidified with dilute sulphuric acid as MnO4¯ is powerful enough to oxidise the chloride ions in hydrochloric acid. It is used to estimate iron(II), hydrogen peroxide, ethanedioic (oxalic) acid and ethanedioate (oxalate) ions. The last two titrations are carried out above 60°C due to the slow rate of reaction. No indicator is required; the end point being the first sign of a permanent pale pink colour. Iron(II)MnO4¯(aq) + 8H+(aq) + 5Fe2+(aq) ——> Mn2+(aq) + 5Fe3+(aq) + 4H2O(l) this means that moles of Fe2+ = 5 moles of MnO4¯ 1

  15. REACTIONS OF IRON(II) VolumetricIron(II) can be analysed by titration with potassium manganate(VII) in acidic (H2SO4) solution. No indicator is required. MnO4¯(aq) + 8H+(aq) + 5Fe2+(aq) ——> Mn2+(aq) + 5Fe3+(aq) + 4H2O(l) this means that moles of Fe2+ = 5 moles of MnO4¯ 1 CONTENTS

  16. AN INTRODUCTION TO TRANSITION METAL COMPLEXES THE END © 2009 JONATHAN HOPTON & KNOCKHARDY PUBLISHING

More Related