1 / 13

天の川銀河の中心の星の運動

天の川銀河の中心の星の運動. 海王星くらいの 軌道で (5km/ 秒) 5000km/ 秒以上. 太陽の 400 万倍 も重いブラック ホールがある. 銀河内円盤. 銀河中心のX線観測 -その意味と課題ー. 銀河中心. ( 1 ) 6.7 keV LIne: 超高温プラズマ(約1億度 ) の発見. ASCA 320 ksec (Koyama et al. 1996). Suzaku: 180 ksec. S XV Kβ. S XVI Kα. S XV Kα. Si XIII Kβ. Si XIV Kα. Si XIII Kα.

ulfah
Download Presentation

天の川銀河の中心の星の運動

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 天の川銀河の中心の星の運動 海王星くらいの 軌道で(5km/秒) 5000km/秒以上 太陽の400万倍 も重いブラック ホールがある

  2. 銀河内円盤 銀河中心のX線観測 -その意味と課題ー 銀河中心 (1)6.7 keV LIne: 超高温プラズマ(約1億度)の発見

  3. ASCA320 ksec (Koyama et al. 1996) Suzaku:180 ksec S XV Kβ S XVI Kα S XV Kα Si XIII Kβ Si XIV Kα Si XIII Kα Chandra600ksec (Muno et al.2004) XMM 50 ksec (Tanaka) XIS: The BestX-ray CCD

  4. Upper:. The best-fit results with the absorption gas in solar abundance Lower: The best-fit results with the absorption gas in non-solar abundance • The Bets-fit column density are; • NSi = 4.8x1018cm-2 • NS = 9.6x1017 cm-2 • NFe = 8.2x1018 cm-2 • Then; • ZSi = 3.3 solar • ZS = 1.4 solar • ZFe = 2.9 solar • For Si, S: NH = 4.1x1022 cm-2, • For Fe "canonical value“: • NH = 6x1022 cm-2

  5. Fe24+ Kα Fe Kα Fe25+ Kα Ni26+ Kα Fe Kβ Fe24+ Kβ 7 6 8 Table of He-like Iron Triplets ----------------------------------------------------------------------------------------------------- Name Transition Energy (eV) ----------------------------------------------------------------------------------------------------- Resonance (r) 1s21S0 - 1s2p 1P1 6700.5 Intercombination line (x) 1s2 1S0 - 1s2p 3P2 6682.4 (y) 1s2 1S0 - 1s2p 3P01 6667.6 Forbidden line (f)1s2 1S0 - 1s2s 3S1 6636.7 -----------------------------------------------------------------------------------------------------

  6. Origin of the Iron Lines ? 1s2p1P1 Electron Capture = 6666eV 1s2p3P0,1,2 f Resonance (r) 6.703keV 1s2p3P r Forbidden (f) 6.639keV Δl=1,Δs=0 1s21S0 Δl=0,Δs=1 l Fine Structure of Fe24+ 6666eV 6685eV Collisional Excitation= 6685 eV FeXXIV FeXXV r f l

  7. 6.7keV-Map He-like Fe Ka =6679 eV: Close to 6685eV(d =6eV) H-like Ka line is narrow: Width (s) = 17 eV (~ those of Cal Line) Sgr A* 6.4keV-MaP No intensity enhancement at the 6.4 keV cloud (More H2) 30 pc Collisional Excitation is more Likely

  8. Fe24+ Kα Fe25+ Kα Fe24+ Kβ 7 6 8 Ionization (He-like/H-like Ka) , Electron (Kb/Ka) Temperatures are both ~6 keV (CIE) Temperatures are nearly Constant at l=-0.4~+0.1 deg ,while decrease at the 6.4 keV Cloud Sgr A East

  9. Lyman Series limit

  10. Ionization Temperature He-like Fe Ka/H-like Fe Ka = 5.7~6.6 keV He-like Fe Ka/He-like Ni Ka = 3.5~10 keV (to be revised) Electron Temperature He-like Fe Kb/Ka = 6~10 keV (to be revised)

  11. Centroid of He-like Ka moves with Ionization Temperature due to the satellite lines  From the Observed Centroid, the Ionization temperature is 2.5~6.5 keV(including the systematic error ~5 eV), consistent with He-like Ka/He-like Kb

More Related