1 / 18

Greg Kelly, Hanford High School, Richland, Washington - PowerPoint PPT Presentation

Photo by Vickie Kelly, 2003. Greg Kelly, Hanford High School, Richland, Washington. 7.3 day 2. Disks, Washers and Shells. Limerick Nuclear Generating Station, Pottstown, Pennsylvania. Suppose I start with this curve.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

PowerPoint Slideshow about ' Greg Kelly, Hanford High School, Richland, Washington' - truman

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Greg Kelly, Hanford High School, Richland, Washington

7.3 day 2

Disks, Washers and Shells

Limerick Nuclear Generating Station, Pottstown, Pennsylvania

My boss at the ACME Rocket Company has assigned me to build a nose cone in this shape.

So I put a piece of wood in a lathe and turn it to a shape to match the curve.

How could we find the volume of the cone?

One way would be to cut it into a series of thin slices (flat cylinders) and add their volumes.

In this case:

r= the y value of the function

thickness = a small change in x =dx

If we add the volumes, we get:

This application of the method of slicing is called the disk method. The shape of the slice is a disk, so we use the formula for the area of a circle to find the volume of the disk.

If the shape is rotated about the x-axis, then the formula is:

A shape rotated about the y-axis would be:

Since we will be using the disk method to rotate shapes about other lines besides the x-axis, we will not have this formula on the formula quizzes.

y-axis is revolved about the y-axis. Find the volume.

y

x

The radius is the x value of the function .

We use a horizontal disk.

The thickness is dy.

volume of disk

The natural draft cooling tower shown at left is about 500 feet high and its shape can be approximated by the graph of this equation revolved about the y-axis:

The volume can be calculated using the disk method with a horizontal disk.

The volume of the washer is: feet high and its shape can be approximated by the graph of this equation revolved about the y-axis:

The region bounded by

and is revolved about the y-axis.

Find the volume.

If we use a horizontal slice:

The “disk” now has a hole in it, making it a “washer”.

outer

inner

The washer method formula is: feet high and its shape can be approximated by the graph of this equation revolved about the y-axis:

This application of the method of slicing is called the washer method. The shape of the slice is a circle with a hole in it, so we subtract the area of the inner circle from the area of the outer circle.

Like the disk method, this formula will not be on the formula quizzes. I want you to understand the formula.

r feet high and its shape can be approximated by the graph of this equation revolved about the y-axis:

R

If the same region is rotated about the line x=2:

Find the volume of the region bounded by , , and revolved about the y-axis.

We can use the washer method if we split it into two parts:

cylinder

inner

outer

thickness

of slice

Here is another way we could approach this problem: , and revolved about the

cross section

If we take a vertical slice

and revolve it about the y-axis

we get a cylinder.

If we add all of the cylinders together, we can reconstruct the original object.

cross section , and revolved about the

The volume of a thin, hollow cylinder is given by:

r is the x value of the function.

h is the y value of the function.

thickness is dx.

This is called the , and revolved about the shell method because we use cylindrical shells.

cross section

If we add all the cylinders from the smallest to the largest:

We can’t solve for x, so we can’t use a horizontal slice directly.

If we take a vertical slice the y axis.

and revolve it about the y-axis

we get a cylinder.

Shell method:

Note: the y axis.

When entering this into the calculator, be sure to enter the multiplication symbol before the parenthesis.

When the strip is perpendicular to the axis of rotation, use the washer method.

p