dielectron analysis status
Download
Skip this Video
Download Presentation
Dielectron Analysis Status

Loading in 2 Seconds...

play fullscreen
1 / 17

Dielectron Analysis Status - PowerPoint PPT Presentation


  • 117 Views
  • Uploaded on

Dielectron Analysis Status. WIS 21-Aug-14. Normalization. Get the normalization factors for the like sign spectra: Get in integrals of the normalized like sign spectra: Get the normalization factor for the unlike sign spectrum:. Normalization I. Normalization II. HIJING (~0-10% central).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Dielectron Analysis Status' - trory


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
normalization
Normalization
  • Get the normalization factors for the like sign spectra:
  • Get in integrals of the normalized like sign spectra:
  • Get the normalization factor for the unlike sign spectrum:

Normalization I.

Normalization II.

hijing 0 10 central
HIJING (~0-10% central)
  • Compare the combinatorial background from SAME event with the combinatorial background from MIXED event
  • How do we select the combinatorial background from SAME event:

vert1!=vert2

(both legs are coming from different space points)

OR

vert1==vert2 && vertr1==0 && vertr2==0

(both legs are coming from exactly zero – these are pi+ and pi-)

hijing 0 10 central1
HIJING (~0-10% central)
  • Applying the Normalization II:

-> the ratio of the combinatorics from the SAME and the MIXED is:

0.9898 +/- 0.0003

hijing 0 10 central2
HIJING (~0-10% central)
  • Applying the Normalization I:

-> the ratio of the combinatorics from the SAME and the MIXED is 1

hijing to data
HIJING to DATA

-> Assuming the results from HIJING are correct we apply normalization I. to the data

  • Standards CA eID is applied
  • DC ghost track rejected
  • RICH ghost event rejected
  • Normalization done after CA and ghost cuts
  • HBD cuts applied later
  • In the following slides the data set is ~1B events
cabana boy settings
Cabana Boy settings

//CabanaBoy *cb = new CabanaBoy(10,8,1,"ULMM_DataTrack");

CabanaBoy *cb = new CabanaBoy(10,8,6,"ULMM_DataTrack"); cb->setPoolType(CabanaBoy::AkibaPools);cb->setPoolDepth(100);cb->setFastMom(false);cb->setZVertexMax(20.0);//cb->setReactionPlaneSelectionType(CabanaBoy::ReactionPlaneNotUsed);

cb->setReactionPlaneSelectionType(CabanaBoy::ReactionPlaneRun7RXNEllipticSN); cb->setCentralitySelectionType(CabanaBoy::CentralityTypeRun10AuAu200);

  • Other settings
  • CA eID cuts
  • no HBD cuts applied
  • Ghost events rejected
n like b like s 0 centrality 10
Nlike/Blike , S+- (0 < centrality < 10)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 10 centrality 20
Nlike/Blike , S+- (10 < centrality < 20)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 20 centrality 40
Nlike/Blike , S+- (20 < centrality < 40)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 40 centrality 92
Nlike/Blike , S+- (40 < centrality < 92)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

applying strong eid cuts
Applying strong eID cuts
  • eID cuts:
    • n0 > 3
    • sqrt(emcsdphi*emcsdphi + emcsdz*emcsdz) < 2
    • dep > -1 [#]
    • chi2/npe0 < 5
    • disp < 4
    • prob > 0.05
    • |zed| < 75
  • In the following slides the data set is ~2B events
n like b like s 0 centrality 101
Nlike/Blike , S+- (0 < centrality < 10)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 10 centrality 201
Nlike/Blike , S+- (10 < centrality < 20)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 20 centrality 401
Nlike/Blike , S+- (20 < centrality < 40)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

n like b like s 40 centrality 921
Nlike/Blike , S+- (40 < centrality < 92)

CA + ghost rej.

CA + ghost rej. + HBD (matching)

CA + ghost rej. + HBD (matching)

+ S/D rejection

summary
Summary
  • There is some correlation in like sign?
  • It is masked by the combinatorics in the central, but becomes visible in the peripheral?
  • The like-sign ratio looks flat for the central and the normalization is reasonble?
  • Should we apply some kind of “jet-free region” normalization for the peripheral?
  • Will try to study peripheral events in HIJING
ad