1 / 22

KTeV Results: K L  p 0 ll ( l =e, m , n )

KTeV Results: K L  p 0 ll ( l =e, m , n ). BEACH 2004 June 30, 2004 Julie Whitmore, Fermilab Physics Motivation - Direct CP Violation KTeV Detector Results Summary The KTeV Collaboration: Arizona, Campinas, Chicago, Colorado, Elmhurst, Fermilab, Osaka,

tress
Download Presentation

KTeV Results: K L  p 0 ll ( l =e, m , n )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KTeV Results: KL p0ll(l=e,m,n) BEACH 2004 June 30, 2004 Julie Whitmore, Fermilab • Physics Motivation - Direct CP Violation • KTeV Detector • Results • Summary The KTeV Collaboration: Arizona, Campinas, Chicago, Colorado, Elmhurst, Fermilab, Osaka, Rice, Rutgers, Sao Paulo, UCLA, UCSD, Virginia, Wisconsin

  2. Direct CP Violation in KLp0ll DIR Direct (KL K2 + e K1;K2 p0g*,p0Z*) The Golden Mode

  3. CP Violation in KLp0ll (from theory + BR(Ksp0ll) (NA48)) CPV = Indirect (KL K2 + e K1;K1p0g*,p0Z*) + Interference + Direct (KL K2 + e K1;K2  p0g*,p0Z*) Conserving(KL K2 + e K1;K2p0g*g*) Theoretical Predictions Theoretical Predictions (from theory + BR(KLp0gg))

  4. KTeV Fixed Target Run • KTeV(E832) 96-97 Data Set: 3.3E6 KL p0p0 • KTeV (E799-II) 97 Data Set: 2.7E11 KL Decays • KTeV(E832) 99 Data Set: 3.7E6 KL p0p0 • KTeV (E799-II) 99 Data Set: 3.6E11 KL Decays

  5. The KTeV Detector • Pure CsI Calorimeter: (Energy resolution  1% at Eg  = 10GeV, p/e rejection of  700) • Transition radiation detectors (p/e rejection of  200) • Drift chambers with resolutions (~100m) • Clean intense beams: (5-8)E12 protons on target per spill • 5-8 x 109 kaons per spill • KTeV (E799-II) Data Set: 6.3E11 Kaon Decays (97 + 99)

  6. KLp0nn Muon Counters Muon Steel CsI g e+ n n KL e- from e+e- Z vertex • Advantage - Dominated by direct CP violation • Disadvantage -0 gg difficult; Dalitz decay BR(0 eeg ); significant backgrounds • 1997 Analyses • Dalitz Analysis (0 eeg ) • Event Selection: 1 g , 2 electron-like showers matched to tracks, unbalanced Pt • Backgrounds: KL 20 , KL 30,   n0,   0 • Normalize to KL eeg • Neutral Analysis (0 gg ) • Special Run - 1 Day of data taking, Single smaller beam • Normalize to (KL0 0 ) • 1999 Data – Dalitz Trigger Prescaled

  7. KLp0nn Data MC BG Sum Lnp0MC XLp0 MC Signal MC BR(KL p0nn)  5.9 x 10-7 (0ee, 1997 Data)[PRD 61,072006 (2000)] BR (KLp0nn)  1.6 x 10-6 (0g, 1997 1 Day) [PLB 447, 240 (1999)] 1997 Data Dalitz Analysis

  8. KL p0e+e- • Advantage: fully reconstruct the final state. • Disadvantages: not pure direct CP violation Serious background (KL eegg) • Contributions to BR(KL p0e+e-) • CP Violating: BR ~ (17 ± 9 + 5) x 10-12 (est. from theory+KS p0e+e-) • CP Conserving: BR ~ 0.5 x 10-12 (est. from theory+ KL p0gg) • Total:BR (KL p0e+e-)= (1-3) x 10-11 • New Physics  Enhancements in BR Previous Result: BR (KL p0e+e- )< 5.1 x 10-10 (KTeV1997) [PRL 86, 397 (2001)]

  9. KL e+e-gg KL 00,0eeg KLeeg +gACC 1988 Events 76.6  3.3 Est. Background BR(KL  e+e-gg, Eg*>5MeV) = (6.310.14(stat)±0.42(sys))x10-7[PRD 64, 012003 (2001)]

  10. KL p0e+e- Muon Counters Muon Steel CsI g e+ g KL e- from e+e- Z vertex • Analysis – 1999 Data • Event selection: 2 g forming p0; 2 electron-like showers matched to tracks, CsI+TRD(p/e) • Backgrounds: KL p0+-, KL en+gacc+grad, and KL eegg • Suppress with kinematic Cuts: |COS(p)| and min • Total contribution in the blind analysis box: 3.9 ± 1.4 events (2.9 ± 0.47 events come fromKL eegg) • Normalize to KL p0p0,p0 eeg

  11. KL  p0e+e- KLp0 p0 p0 eX eX gg KLe +p0ACC KLe+rad + gACC KL p0 p0 p0 egX eX gX KL eegg; Mgg Mp0 Blind Analysis Box Region Signal Ellipse ±2s Mgg Mp0

  12. Kinematic Variables for KL  p0e+e- and KL  e+e-gg KLeegg KLp0ee min Cos() KLp0e+e- KLe+e-gg KLp0ee KLeegg

  13. Kinematic Cuts for KL  p0e+e- and KL  e+e-gg Cos (Qp) QMIN • Phase space cuts optimized • Cuts varied and expected background and signal acceptance calculated • 90% CL BR limit determined for each set via Feldman-Cousins technique • Assume any events are background • Cuts optimized to yield lowest expected branching ratio limit • Signal Acceptance: (2.749 ± 0.013)% • 30% less than 1997 due to accidentals (tighter TRD, phase space, and mass cuts) • SES: 1.04 x 10-10 Cos(Qp)<0.745 QMIN>0.362

  14. KL  p0e+e- 1999 Data Box Region: 130<mgg<140 MeV/c2 485<meegg<510 MeV/c2 Signal Region: ±2s in KLp0e+e- Background in ellipse: 0.99 ±0.35 BR(KL  p0e+e-)  3.50 x 10-10 (90% C.L.) (1999) [Accepted by PRL] BR(KL p0e+e-)  2.8 x 10-10 (90% C.L.) (1997+1999)

  15. KL p0+m- • Advantage: Probes direct CP violation Like KL p0e+e- - fully reconstruct the final state • Disadvantages: phase space suppression • Small relative to the CPC and Indirect CPV • Potential background (KL mmgg) • Contributions to BR(KL p0m+m-) • CP Violating: BR ~ (9 ± 6 + 1) x 10-12(est. from theory + KS p0m+m-) • CP Conserving: BR ~ 5 x 10-12 (est. from theory+ KL p0gg) • Total:BR (KL p0m+m-)= (1 – 2) x 10-11 • New Physics  Enhancements in BR Previous limit: BR (KL p0m+m- )< 5.1 x 10-9 (E799-I)

  16. KL p0+m- Muon Counters Muon Steel CsI g m+ g KL m- Z vertex from m+m- • 1997 Analysis • Event Selection: 2 g reconstructing as a p0; 2 tracks which MIP in the calorimeter, 2 ID muons • Backgrounds from p punch-through and p decay-in-flight from p+p-p0 and KLpmn(+ 2ACC); KL mmgg (0.373 0.032 evts) • Suppress with kinematic cuts on M(gg) and M(mm) • Angular cuts on |COS(p)| and min less effective than with eegg • Total contribution: 0.87 ± 0.15 events • Normalize to p+p-p0 decays

  17. KL m+m-gg • Dangerous background for KL p0m+m- • Never been observed • Analysis • Event Selection: 2 g which do not reconstruct as a p0; 2 tracks which MIP in the calorimeter, 2 ID muons • Backgrounds from KL pmn(+2ACC), mmg+gACC • Kinematic Cuts: Eg • Total Contribution: 0.155 ± 0.081 • Normalize to KL +-0 • QED Pred:BR(KL m+m-gg) = (9.1 0.78) x 10-9

  18. KL mmgg BR(KL m+m-gg,Mgg>1MeV/c2) = BR(KL m+m-gg, Eg*>10MeV) = 4 events seen First observation [PRD 62, 112001 (2000)]

  19. Kinematic Distributions for KL p0+m- and KL +m-gg Cos() min KLp0mm KLmmgg KLp0mm KLmmgg KLp0mm KLmmgg

  20. KL p0mm  BR(KL p0mm)  3.8 x 10-10 (90% C.L.) [PRL 86, 5425 (2001)] 2 events in signal region Data Background MC

  21. Current Status

  22. Summary • Analyzed 1997 data - BR(KLp0nn)  5.9 x 10-7 (0ee) • B(KL  e+e-gg) = (6.31  0.14(stat)  0.42(sys))x10-7 • No Dalitz trigger in1999 data • Look forward to future experiments – KOPIO and E391a • Analyzed full KTeV data set (1997 + 1999) - BR(KL p0e+e-) 2.8 x 10-10 (90% C.L.) • Analyzed 1997 data - BR(KL p0mm)  3.8 x 10-10 (90% C.L.) • B(KL m+m-gg) = (1.42 (+1.0-0.08)  0.10)x 10-9 • Currently analyzing 1999 data • Combined 1997+1999 data set ~ 2 x 1997 • More accidentals – tighter cuts (lose acceptance) • Normalize to KL m+m-g – reduce uncertainties from muon system • Expected SES (1997+1999) ~ 1 x 10-10

More Related