cosmic jets
Download
Skip this Video
Download Presentation
Cosmic Jets

Loading in 2 Seconds...

play fullscreen
1 / 40

Cosmic Jets - PowerPoint PPT Presentation


  • 189 Views
  • Uploaded on

Cosmic Jets. Neutrinos. as sources for high-energetic. Andreas Müller http://www.lsw.uni-heidelberg.de/~amueller/. Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg. 12. 12. 2002. Overview. Motivation The AGN paradigm Jet physics:

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Cosmic Jets' - trella


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
cosmic jets

Cosmic Jets

Neutrinos

as sources for high-energetic

Andreas Müller

http://www.lsw.uni-heidelberg.de/~amueller/

Theoriegruppe

Prof. Camenzind

Landessternwarte

Königstuhl, Heidelberg

12. 12. 2002

overview

Overview

  • Motivation
  • The AGN paradigm
  • Jet physics:

Formation, collimation, morphology

  • Particle acceleration
  • Jet simulations and sources
  • Relativistic leptonic and hadronic Jets
  • Ultra-relativistic GRB Jets
  • Cosmic Rays
  • Proton Blazars
  • AGN neutrino flux
  • Microquasars
  • Microquasar neutrino fluxes
  • Implications of UHE neutrino astronomy
  • Surprise!
motivation

p + p _ p+ + X CC

_ p- + X CC EN > 300 MeV

_ p0 + X NC

p + g_ p0 + p photopion production

(inelastic scattering)

p + g_ p+ + n escape via isospin flip

p-_ m- + nm

p+ _ m+ + nm

p0 _ g + g

m-_ e- + ne + nm

m+ _ e+ + ne + nm

Motivation

hadrons

neutrinos

cosmic neutrino sources

Cosmic neutrino sources

  • Galactic sources:

Sgr A*

SN

SNRs

Microquasars

  • Extragalactic sources:

GRBs

GRBRs

AGN Jets

constraint: AMANDA threshold 50 GeV

jet formation theory

Jet formation - theory

  • Kerr black hole vital:

frame dragging in ergosphere

  • ergospheric dynamo:

creates and sustains toroidal magnetic

flux and currents

  • extraction of rotational energy of Kerr hole
  • outgoing wind driven by MHD Alfvén waves
  • reconnection: plasma decouples from magnetic field as approaching to horizon

(restatement of No-Hair theorem)

  • magnetized accretion disk: energy of accreting plasma powers the wind

(B. Punsly, BH GHM, Springer 2001)

jet formation simulation

Jet formation - simulation

log(r) from 0.1 to 100 color-coded, arrows: velocity,

solid line: magnetic field

parameters: a = 0.95, t = 65 rS, vJet = 0.93c, g = 2.7

(Koide et al., 2001)

mhd jet collimation and acceleration

Lorentz force:

electric current

in jet plasma

  • toroidal mag. field BF
  • FII: acceleration
  • total magnetic field B
  • FI: collimation

additional dependencies:

  • gas pressure
  • centrifugal forces
  • ambient pressure

MHD-Jet collimation and acceleration

particle acceleration

Particle acceleration

  • Lorentz forces and gas pressure in Jets
  • Fermi acceleration
  • 1st order:

relativistic shock waves propagate through turbulent plasma accelerating charged particles

  • 2nd order:

stochastical acceleration of particles when diffusing through turbulent plasma

  • macroscopic kinetic energy of plasma transfered to few charged particles!
  • shock fronts

Jets: internal shocks, bow shock

GRBs: fireball shock

SNs/SNRs: blast wave shock

(ApJS 141, 195-209, 2002, Albuquerque et al.)

jet simulation

Jet simulation

cocoon

shocked ext. medium

bow shock

r

t = 1.64 Myr

M. Krause, LSW HD

jet emission knots

Jet – emission knots

periodic bright knots associated with inner shocks

(rarefaction & compression)

complete linear size: 159 kpc z = 1.112

radio jet cyg a

Radio Jet – Cyg A

VLA

jet and counter-jet, core, hot spots, lobes

Synchrotron emission in radio from relativistic e-

false color image: red is brightest radio, blue fainter.

D ~ 200 Mpc

x ray jet cyg a

X-ray Jet – Cyg A

Chandra

X-ray cavity formed by powerful jets

hot spots clearly visible in 100 kpc distance away from core

surrounding is hot cluster gas T ~ 107 to 108 K

resulting topology: prolate/cigar-shaped cavity

relativistic hadronic and leptonic jets

Relativistic hadronic and leptonic Jets

  • 3 models:

BC – baryonic cold

LC – leptonic cold

LH – leptonic hot

  • leptonic species: e-e+ (rel.)
  • hadronic species: p, He (th.)
  • Relativistic Hydrodynamics

(RHD) in 2D

  • NEC SX-5 Supercomputer
  • jet kinetic power:

1044 to 1047 erg/s

  • typical lifetime: 10 Myr
  • surprisingly similar

dynamic and morphology!

log(r)

(Scheck et al., 2002)

relativistic hadronic and leptonic jets20

Relativistic hadronic and leptonic Jets

lowest G

highest G

Lorentz factor G after 6.3 Myr

(Scheck et al., 2002)

relativistic grb jet

1.8 s after explosion

  • = 10 a v = 0.995c
  • axis unit: 100 000 km
  • contour:
  • vr > 0.3c
  • eint > 0.05 e0
  • Jet:
  • 8° opening angle
  • Jet core:
  • 99.97% c

Relativistic GRB-Jet

G

outer stellar atmosphere

stellar surface

M.A. Aloy, E. Müller; MPA Garching

cosmic rays

Cosmic Rays

  • ultra high-energy CR: 1019 eV < E < 1020 eV
  • 1st reported by Fly‘s Eye, AGASA air shower detectors
  • CR sources: homogeneous distributed and cosmological
  • candidates: GRBs (cp. BATSE @ CGRO)

AGN Jets: photo-produced p0 decay to gg

  • CR sources generate UHE protons
  • each has power-law differential proton spectrum:

dN/dE ~ E-a

  • spectrum insensitive to source evolution with z and

cosmological parameters (H0)

  • observable constraint: 1.8 < a < 2.8
  • often assumed: a = 2.0
  • neutrinos overtake a-value if secondary from p-p reaction!
  • in p-g reactions weighting with photon power law
  • WB limit: neutrino flux limited by parental proton energy!

(ApJ 425, L1-L4, 1995, Waxman; Waxman & Bahcall, 1999, 2001)

cr spectrum

CR spectrum

ECR > 1017 eV

(astro-ph/0011524, Gaisser)

proton blazar model

non-conservative approach! (alternative to IC of accretion disk thermal UV emission on accelerated electrons)

  • proton acceleration in most powerful AGN Jets
  • power law distribution: np(Ep)~Ep-s
  • protons hit
      • p-target yields n: Qppn(En)~ En-s neutrino production rate
      • g-target yields:
        • CMB: Greisen-Zatsepin-Kuz‘min cut-off (1966):
        • Ep < 1019 eV „intergalactic proton“
        • Synchrotron spectrum with ng(Eg)~ Eg-a:

Qpgn(En)~ En-(s-a)

  • protons undergo unsaturated synchrotron cascades and emit Xg, electrons: synchrotron contributions
  • drastic steepening of cascade spectrum above

Eg ~ 100 GeV: absorption of Xg by host galaxy

IR-photons from dust

  • BUT: neutrinos not dampend!

Proton blazar model

(astro-ph/9306005, 9502085, 0202074, Mannheim)

proton blazar 1218 258

Proton blazar 1218+258

Data:

NED

Montigny et al. 1994

Fink et al.

Whipple group

  • fit parameters:

q = 7°

gjet = 5

gp = 2 x 109

d = 7

B = 4 G

(astro-ph/9502085, Mannheim)

quasar 3c273 predicted neutrino flux

Quasar 3C273 –predicted neutrino flux

  • nmfluxes
  • compared with SNRs and Coma galaxy cluster
  • n oscillations neglected!

(astro-ph/0202074, Hettlage & Mannheim)

microquasars

Microquasars

Chandra homepage

microquasar cyg x 3

MicroquasarCyg X-3

  • discovery in 1967 (Giacconi et al.)
  • companion: massive Wolf-Rayet as can be observed

from wind in I- and K-band (van Kerkwijk et al., 1992)

  • orbital period: 4.8 h derived from IR and X-ray flux modulation via eclipses (Parsignault et al, 1972;

Mason et al., 1986)

  • TeV source!
  • optical observation possible (extinction in Galactic plane)
  • CO nature:

NS of ~ 1 M8 with 10-7 M8/yr and WR with 15 M8

(Heuvel & de Loore, 1973)

vs.

stellar BH with WR of 2.5 M8

(Vanbeveren et al., 1998; McCollough, 1999)

  • 1st only one-sided jet (Mioduszewski et al., 1998)
microquasar cyg x 330

MicroquasarCyg X-3

  • evolution sequence of

bipolar radio jet

  • binary system:

Wolf-Rayet and NS/BH

  • D = 10 kpc
  • q = 14°
  • b = 0.81

(Mioduszewski et al., 2001)

VLBA

microquasar grs1915 105

MicroquasarGRS1915+105

  • evolution sequence of

one-sided radio blob

  • binary system:

normal star and BH

  • GBHC: MBH ~ 14 M8
  • D = 12.5 kpc
  • q = 70°
  • b = 0.92!

(Mirabel & Rodriguez, 1994)

VLA

ss 433 data

most enigmatic and still unique object in the sky!

  • CO: neutron star or black hole?
  • companion: OB star with 20 M8
  • mass loss rate: 10-4 M8/yr (wind)
  • orbital period: 13.1 d
  • persistent source
  • 1977 discovered, constellation Eagle
  • d = 3 kpc
  • i = 79°
  • b = 0.26 (nearly const!)
  • no continuous jet: bullets
  • slow wobbling period: 164 d
  • surrounded by diffuse nebular W50 (possible SNR)
  • jet: strong, variable Ha line emission
  • emission lines doubled
  • estimated: Ljet ~ 1039 erg/s

SS 433 - data

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

ss 433 in x rays

SS 433 in X-rays

T ~ 5 x 107 K

d ~ 5 x 1018 km

Chandra homepage 11.12. 2002

ss 433 theory

SS 433 - theory

  • bullet ejection model
  • timescale: non-steady shocks in sub-Keplerian accretion flow
  • bullet shooting interval: 50-1000 s
  • donor matter rejection by centrifugal force
  • radiation pressure supported Keplerian disk
  • 15 to 20% of accreted matter is outflow:

mean outflow rate: 1018 g/s

  • mean accumulated bullet mass 1019 - 1021 g (moon 1021 g)
  • bullet formation by shock oscillations due to inherent

unsteady accretion solutions

(astro-ph/0208148, Chakrabarti et al.)

microquasars parameters

Microquasars - parameters

Sn

Ljet

i

G

  • all jets resolved in radio (~280 known XRBs, ~50 radio-loud)
  • SS 433 not present: more complicated model

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

microquasars m event predictions

Microquasars – m event predictions

pulse

periodic

strong

persistent:

1 yr integration time Dt

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

implications of uhe neutrino astronomy

Implications of UHE neutrino astronomy

  • determination of two-component jet plasma:

fixing the ratio of leptonic to hadronic species

„Detection of n emitted by AGN would be a smoking gun for hadron acceleration.“ (Hettlage & Mannheim)

  • deeper insight in Jet physics generally
  • better understanding of microquasar physics
  • detection of low-inclined radio-hidden microquasars
  • verification of neutrino oscillations on cosmological scales
  • clarification of neutrinos as Majorana particles
  • CR mapping
  • new issues for the origin of UHE cosmic rays
most distant agn

Most distant AGN

Chandra

SDSS quasars in 13 billion lightyears distance

emission starts as Universe was 1 billion years old!

MBH ~ 1010 M8 (Brandt et al., 2002)

ad