Cosmic jets
Download
1 / 40

Cosmic Jets - PowerPoint PPT Presentation


  • 188 Views
  • Uploaded on

Cosmic Jets. Neutrinos. as sources for high-energetic. Andreas Müller http://www.lsw.uni-heidelberg.de/~amueller/. Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg. 12. 12. 2002. Overview. Motivation The AGN paradigm Jet physics:

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Cosmic Jets' - trella


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Cosmic jets l.jpg

Cosmic Jets

Neutrinos

as sources for high-energetic

Andreas Müller

http://www.lsw.uni-heidelberg.de/~amueller/

Theoriegruppe

Prof. Camenzind

Landessternwarte

Königstuhl, Heidelberg

12. 12. 2002


Overview l.jpg

Overview

  • Motivation

  • The AGN paradigm

  • Jet physics:

    Formation, collimation, morphology

  • Particle acceleration

  • Jet simulations and sources

  • Relativistic leptonic and hadronic Jets

  • Ultra-relativistic GRB Jets

  • Cosmic Rays

  • Proton Blazars

  • AGN neutrino flux

  • Microquasars

  • Microquasar neutrino fluxes

  • Implications of UHE neutrino astronomy

  • Surprise!


Motivation l.jpg

p + p _ p+ + X CC

_ p- + X CC EN > 300 MeV

_ p0 + X NC

p + g_ p0 + p photopion production

(inelastic scattering)

p + g_ p+ + n escape via isospin flip

p-_ m- + nm

p+ _ m+ + nm

p0 _ g + g

m-_ e- + ne + nm

m+ _ e+ + ne + nm

Motivation

hadrons

neutrinos


Cosmic neutrino sources l.jpg

Cosmic neutrino sources

  • Galactic sources:

    Sgr A*

    SN

    SNRs

    Microquasars

  • Extragalactic sources:

    GRBs

    GRBRs

    AGN Jets

    constraint: AMANDA threshold 50 GeV


Agn type 1 multi wavelength spectrum l.jpg

IR

UV

Xg

opt

AGN type 1 multi-wavelength spectrum

3 bumps




Jet formation theory l.jpg

Jet formation - theory

  • Kerr black hole vital:

    frame dragging in ergosphere

  • ergospheric dynamo:

    creates and sustains toroidal magnetic

    flux and currents

  • extraction of rotational energy of Kerr hole

  • outgoing wind driven by MHD Alfvén waves

  • reconnection: plasma decouples from magnetic field as approaching to horizon

    (restatement of No-Hair theorem)

  • magnetized accretion disk: energy of accreting plasma powers the wind

(B. Punsly, BH GHM, Springer 2001)


Jet formation simulation l.jpg

Jet formation - simulation

log(r) from 0.1 to 100 color-coded, arrows: velocity,

solid line: magnetic field

parameters: a = 0.95, t = 65 rS, vJet = 0.93c, g = 2.7

(Koide et al., 2001)


Mhd jet collimation and acceleration l.jpg

  • Lorentz force:

    electric current

    in jet plasma

  • toroidal mag. field BF

  • FII: acceleration

  • total magnetic field B

  • FI: collimation

    additional dependencies:

  • gas pressure

  • centrifugal forces

  • ambient pressure

MHD-Jet collimation and acceleration


Particle acceleration l.jpg

Particle acceleration

  • Lorentz forces and gas pressure in Jets

  • Fermi acceleration

  • 1st order:

    relativistic shock waves propagate through turbulent plasma accelerating charged particles

  • 2nd order:

    stochastical acceleration of particles when diffusing through turbulent plasma

  • macroscopic kinetic energy of plasma transfered to few charged particles!

  • shock fronts

    Jets: internal shocks, bow shock

    GRBs: fireball shock

    SNs/SNRs: blast wave shock

(ApJS 141, 195-209, 2002, Albuquerque et al.)



Jet simulation l.jpg

Jet simulation

cocoon

shocked ext. medium

bow shock

r

t = 1.64 Myr

M. Krause, LSW HD


Jet emission knots l.jpg

Jet – emission knots

periodic bright knots associated with inner shocks

(rarefaction & compression)

complete linear size: 159 kpc z = 1.112


Radio jet cyg a l.jpg

Radio Jet – Cyg A

VLA

jet and counter-jet, core, hot spots, lobes

Synchrotron emission in radio from relativistic e-

false color image: red is brightest radio, blue fainter.

D ~ 200 Mpc


X ray jet cyg a l.jpg

X-ray Jet – Cyg A

Chandra

X-ray cavity formed by powerful jets

hot spots clearly visible in 100 kpc distance away from core

surrounding is hot cluster gas T ~ 107 to 108 K

resulting topology: prolate/cigar-shaped cavity


Relativistic hadronic and leptonic jets l.jpg

Relativistic hadronic and leptonic Jets

  • 3 models:

    BC – baryonic cold

    LC – leptonic cold

    LH – leptonic hot

  • leptonic species: e-e+ (rel.)

  • hadronic species: p, He (th.)

  • Relativistic Hydrodynamics

    (RHD) in 2D

  • NEC SX-5 Supercomputer

  • jet kinetic power:

    1044 to 1047 erg/s

  • typical lifetime: 10 Myr

  • surprisingly similar

    dynamic and morphology!

log(r)

(Scheck et al., 2002)


Relativistic hadronic and leptonic jets20 l.jpg

Relativistic hadronic and leptonic Jets

lowest G

highest G

Lorentz factor G after 6.3 Myr

(Scheck et al., 2002)


Relativistic grb jet l.jpg

  • 1.8 s after explosion

  • = 10 a v = 0.995c

  • axis unit: 100 000 km

  • contour:

  • vr > 0.3c

  • eint > 0.05 e0

  • Jet:

  • 8° opening angle

  • Jet core:

  • 99.97% c

Relativistic GRB-Jet

G

outer stellar atmosphere

stellar surface

M.A. Aloy, E. Müller; MPA Garching


Cosmic rays l.jpg

Cosmic Rays

  • ultra high-energy CR: 1019 eV < E < 1020 eV

  • 1st reported by Fly‘s Eye, AGASA air shower detectors

  • CR sources: homogeneous distributed and cosmological

  • candidates: GRBs (cp. BATSE @ CGRO)

    AGN Jets: photo-produced p0 decay to gg

  • CR sources generate UHE protons

  • each has power-law differential proton spectrum:

    dN/dE ~ E-a

  • spectrum insensitive to source evolution with z and

    cosmological parameters (H0)

  • observable constraint: 1.8 < a < 2.8

  • often assumed: a = 2.0

  • neutrinos overtake a-value if secondary from p-p reaction!

  • in p-g reactions weighting with photon power law

  • WB limit: neutrino flux limited by parental proton energy!

(ApJ 425, L1-L4, 1995, Waxman; Waxman & Bahcall, 1999, 2001)


Cr spectrum l.jpg

CR spectrum

ECR > 1017 eV

(astro-ph/0011524, Gaisser)



Proton blazar model l.jpg

  • non-conservative approach! (alternative to IC of accretion disk thermal UV emission on accelerated electrons)

  • proton acceleration in most powerful AGN Jets

  • power law distribution: np(Ep)~Ep-s

  • protons hit

    • p-target yields n: Qppn(En)~ En-s neutrino production rate

    • g-target yields:

      • CMB: Greisen-Zatsepin-Kuz‘min cut-off (1966):

      • Ep < 1019 eV „intergalactic proton“

      • Synchrotron spectrum with ng(Eg)~ Eg-a:

        Qpgn(En)~ En-(s-a)

  • protons undergo unsaturated synchrotron cascades and emit Xg, electrons: synchrotron contributions

  • drastic steepening of cascade spectrum above

    Eg ~ 100 GeV: absorption of Xg by host galaxy

    IR-photons from dust

  • BUT: neutrinos not dampend!

  • Proton blazar model

    (astro-ph/9306005, 9502085, 0202074, Mannheim)


    Proton blazar 1218 258 l.jpg

    Proton blazar 1218+258 disk thermal UV emission on accelerated

    Data:

    NED

    Montigny et al. 1994

    Fink et al.

    Whipple group

    • fit parameters:

      q = 7°

      gjet = 5

      gp = 2 x 109

      d = 7

      B = 4 G

    (astro-ph/9502085, Mannheim)


    Quasar 3c273 predicted neutrino flux l.jpg

    Quasar 3C273 – disk thermal UV emission on accelerated predicted neutrino flux

    • nmfluxes

    • compared with SNRs and Coma galaxy cluster

    • n oscillations neglected!

    (astro-ph/0202074, Hettlage & Mannheim)


    Microquasars l.jpg

    Microquasars disk thermal UV emission on accelerated

    Chandra homepage


    Microquasar cyg x 3 l.jpg

    Microquasar disk thermal UV emission on accelerated Cyg X-3

    • discovery in 1967 (Giacconi et al.)

    • companion: massive Wolf-Rayet as can be observed

      from wind in I- and K-band (van Kerkwijk et al., 1992)

    • orbital period: 4.8 h derived from IR and X-ray flux modulation via eclipses (Parsignault et al, 1972;

      Mason et al., 1986)

    • TeV source!

    • optical observation possible (extinction in Galactic plane)

    • CO nature:

      NS of ~ 1 M8 with 10-7 M8/yr and WR with 15 M8

      (Heuvel & de Loore, 1973)

      vs.

      stellar BH with WR of 2.5 M8

      (Vanbeveren et al., 1998; McCollough, 1999)

    • 1st only one-sided jet (Mioduszewski et al., 1998)


    Microquasar cyg x 330 l.jpg

    Microquasar disk thermal UV emission on accelerated Cyg X-3

    • evolution sequence of

      bipolar radio jet

    • binary system:

      Wolf-Rayet and NS/BH

    • D = 10 kpc

    • q = 14°

    • b = 0.81

      (Mioduszewski et al., 2001)

    VLBA


    Microquasar grs1915 105 l.jpg

    Microquasar disk thermal UV emission on accelerated GRS1915+105

    • evolution sequence of

      one-sided radio blob

    • binary system:

      normal star and BH

    • GBHC: MBH ~ 14 M8

    • D = 12.5 kpc

    • q = 70°

    • b = 0.92!

      (Mirabel & Rodriguez, 1994)

    VLA


    Ss 433 data l.jpg

    • most enigmatic and still unique object in the sky! disk thermal UV emission on accelerated

    • CO: neutron star or black hole?

    • companion: OB star with 20 M8

    • mass loss rate: 10-4 M8/yr (wind)

    • orbital period: 13.1 d

    • persistent source

    • 1977 discovered, constellation Eagle

    • d = 3 kpc

    • i = 79°

    • b = 0.26 (nearly const!)

    • no continuous jet: bullets

    • slow wobbling period: 164 d

    • surrounded by diffuse nebular W50 (possible SNR)

    • jet: strong, variable Ha line emission

    • emission lines doubled

    • estimated: Ljet ~ 1039 erg/s

    SS 433 - data

    (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)


    Ss 433 l.jpg

    ~ 20 cm disk thermal UV emission on accelerated

    SNR W50A

    SS 433


    Ss 433 in x rays l.jpg

    SS 433 in X-rays disk thermal UV emission on accelerated

    T ~ 5 x 107 K

    d ~ 5 x 1018 km

    Chandra homepage 11.12. 2002


    Ss 433 theory l.jpg

    SS 433 - theory disk thermal UV emission on accelerated

    • bullet ejection model

    • timescale: non-steady shocks in sub-Keplerian accretion flow

    • bullet shooting interval: 50-1000 s

    • donor matter rejection by centrifugal force

    • radiation pressure supported Keplerian disk

    • 15 to 20% of accreted matter is outflow:

      mean outflow rate: 1018 g/s

    • mean accumulated bullet mass 1019 - 1021 g (moon 1021 g)

    • bullet formation by shock oscillations due to inherent

      unsteady accretion solutions

    (astro-ph/0208148, Chakrabarti et al.)


    Microquasars parameters l.jpg

    Microquasars - parameters disk thermal UV emission on accelerated

    Sn

    Ljet

    i

    G

    • all jets resolved in radio (~280 known XRBs, ~50 radio-loud)

    • SS 433 not present: more complicated model

    (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)


    Microquasars m event predictions l.jpg

    Microquasars – disk thermal UV emission on accelerated m event predictions

    pulse

    periodic

    strong

    persistent:

    1 yr integration time Dt

    (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)


    Implications of uhe neutrino astronomy l.jpg

    Implications disk thermal UV emission on accelerated of UHE neutrino astronomy

    • determination of two-component jet plasma:

      fixing the ratio of leptonic to hadronic species

      „Detection of n emitted by AGN would be a smoking gun for hadron acceleration.“ (Hettlage & Mannheim)

    • deeper insight in Jet physics generally

    • better understanding of microquasar physics

    • detection of low-inclined radio-hidden microquasars

    • verification of neutrino oscillations on cosmological scales

    • clarification of neutrinos as Majorana particles

    • CR mapping

    • new issues for the origin of UHE cosmic rays


    Most distant agn l.jpg

    Most distant AGN disk thermal UV emission on accelerated

    Chandra

    SDSS quasars in 13 billion lightyears distance

    emission starts as Universe was 1 billion years old!

    MBH ~ 1010 M8 (Brandt et al., 2002)


    ad