4200009
This presentation is the property of its rightful owner.
Sponsored Links
1 / 12

托勒密定理 PowerPoint PPT Presentation


  • 103 Views
  • Uploaded on
  • Presentation posted in: General

托勒密定理. ( 兩條對角線乘積 = 兩雙對邊乘積之和 ). 商高定理 和差角公式 餘弦定理. 某些時候 半徑趨近 推廣. 托勒密定理. 任意凸四邊形. Euler 定理. 當圓內接四邊形為 矩形 時. ( 商高定理 ). 當圓內接四邊形為 等腰梯形 時. ( 餘弦定理 ). 有一邊為直徑 (=1) 時. ( 正弦和角公式 ). 有一邊為直徑 (=1) 時. ( 正弦差角公式 ). 推廣的托勒密定理. 設 ABCD 為平面上任意 凸四邊形 ,則. ,當 ABCD 四點共圓等號成立.

Download Presentation

托勒密定理

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


4200009

托勒密定理

(兩條對角線乘積=兩雙對邊乘積之和)


4200009

商高定理

和差角公式

餘弦定理

某些時候

半徑趨近推廣

托勒密定理

任意凸四邊形

Euler定理


4200009

當圓內接四邊形為矩形時

(商高定理)


4200009

當圓內接四邊形為等腰梯形時

(餘弦定理)


4200009

有一邊為直徑(=1)時

(正弦和角公式)


4200009

有一邊為直徑(=1)時

(正弦差角公式)


4200009

推廣的托勒密定理

設ABCD為平面上任意凸四邊形,則

,當ABCD四點共圓等號成立


Euler

Euler定理

設A,B,C,D為直線上按序的四點,則

【證明】


4200009

延伸至三倍角公式


4200009

報告完畢

謝謝聆聽!


  • Login