Electrostatics
Download
1 / 101

ไฟฟ้าสถิต Electrostatics - PowerPoint PPT Presentation


  • 1345 Views
  • Uploaded on

ไฟฟ้าสถิต Electrostatics. รายวิชา ฟิสิกส์ 14 รหัสวิชา ว 30214. ครูเทวัญ ดีจรัส. ความเป็นมาของไฟฟ้าและแม่เหล็ก. ค.ศ. 1600 : William Gilbert พบอำนาจทางไฟฟ้าของประจุในแท่งอำพัน ( amber ). ค.ศ. 1785 : Charles Coulomb เสนอกฎของคูลอมบ์.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' ไฟฟ้าสถิต Electrostatics' - tierra


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Electrostatics

ไฟฟ้าสถิตElectrostatics

รายวิชา ฟิสิกส์ 14

รหัสวิชา ว30214

ครูเทวัญ ดีจรัส


ความเป็นมาของไฟฟ้าและแม่เหล็กความเป็นมาของไฟฟ้าและแม่เหล็ก

  • ค.ศ. 1600 : William Gilbert พบอำนาจทางไฟฟ้าของประจุในแท่งอำพัน (amber)

  • ค.ศ. 1785 : Charles Coulomb เสนอกฎของคูลอมบ์

  • ค.ศ. 1819 : Hans Oersted พบเข็มทิศเบี่ยงเบนเมื่ออยู่ใกล้ลวดตัวนำที่มีกระแสไฟฟ้า

  • ค.ศ. 1831 : Michael Faraday และ Joseph Henry พบว่าเมื่อขดลวดหมุนตัดเส้นแรงแม่เหล็กจะเหนี่ยวนำให้เกิดกระแสไฟฟ้า

  • ค.ศ. 1873 : James Clerk Maxwell ค้นพบกฎของแม่เหล็กไฟฟ้า


Benjamin franklin
Benjamin Franklinความเป็นมาของไฟฟ้าและแม่เหล็ก

ศึกษา ปรากฏการณ์ทางธรรมชาติคือ ฟ้าแลบ ฟ้าร้อง และฟ้าผ่า


ใช้ว่าวกับแผ่นทองแดงไปล่อฟ้าผ่านั้นเอง ทำให้เรารู้ว่า ฟ้าผ่าเป็นปรากฎการณ์ที่เกิดจากการไหลของประจุไฟฟ้าจากที่ๆมีศักย์ไฟฟ้าสูงไปยังที่ๆมีศักย์ไฟฟ้าต่ำ


Electric charges
ประจุไฟฟ้า ทำให้เรารู้ว่า ฟ้าผ่าเป็นปรากฎการณ์ที่เกิดจากการไหลของประจุไฟฟ้าจากที่ๆมีศักย์ไฟฟ้าสูงไปยังที่ๆมีศักย์ไฟฟ้าต่ำ(Electric Charges)

  • ประจุไฟฟ้ามี 2 ชนิด คือ ประจุลบและประจุบวก

  • ประจุลบ คือประจุที่ประกอบด้วยอิเล็กตรอน

  • ประจุบวก คือประจุที่ประกอบด้วยโปรตอน

  • ประจุชนิดเดียวกันจะผลักกันประจุต่างชนิดกันจะดูดกัน

  • หน่วยของประจุคือคูลอมบ์ (C): 1 C คือประจุของอิเล็กตรอนหรือโปรตอนจำนวน 6.24x1018อนุภาค หรือประจุของกระแสไฟฟ้า1 A ที่ไหลผ่าน 1 s


ภาพการสาธิตแรงดูดและแรงผลักระหว่างประจุภาพการสาธิตแรงดูดและแรงผลักระหว่างประจุ

  • ภาพทางขวาคือแรงดูดระหว่างประจุต่างชนิดกัน

  • ภาพทางซ้ายคือแรงผลักระหว่างประจุชนิดเดียวกัน


Conservation of charge
การอนุรักษ์ภาพการสาธิตแรงดูดและแรงผลักระหว่างประจุ(Conservation of Charge)

  • ในระบบที่อยู่โดดเดี่ยวประจุจะเป็นปริมาณที่อนุรักษ์โดยไม่สามารถสร้างขึ้นใหม่ได้หรือสูญหายไปไหน

  • ในวัตถุใดๆ จำนวนประจุจะเป็นจำนวนเท่ากับประจุอิเล็กตรอน:

Q = Ne

  • N คือ เลขจำนวนเต็ม

  • e = 1.6 x 10-19 C

  • e = -e สำหรับอิเล็กตรอน

  • e = +e สำหรับโปรตอน


Electrical and conductor
ตัวนำ และ ฉนวน ภาพการสาธิตแรงดูดและแรงผลักระหว่างประจุ(electrical and conductor)

  • ตัวนำ คือวัตถุที่ประกอบด้วยอิเล็กตรอนอิสระจำนวนมาก

  • อิเล็กตรอนไม่ถูกจำกัดให้อยู่ในอะตอมแต่สามารถเคลื่อนที่ไปได้อย่างอิสระในวัตถุ เช่น ในทองแดงและ อะลูมิเนียม

  • เมื่ออัดประจุให้กับตัวนำณบริเวณหนึ่ง ประจุจะกระจายไปทั่วทั้งก้อน

  • ฉนวน คือวัสดุที่มีอิเล็กตรอนทั้งหมดอยู่ในอะตอม

  • อิเล็กตรอนไม่สามารถเคลื่อนที่ได้อย่างอิสระเช่นในแก้วและไม้

  • เมื่อทำการอัดประจุให้กับฉนวนณบริเวณหนึ่งประจุไม่สามารถกระจายไปยังบริเวณอื่น


การทำให้วัตถุมีการเปลี่ยนแปลงประจุไฟฟ้าการทำให้วัตถุมีการเปลี่ยนแปลงประจุไฟฟ้า

การถู


Electrostatic discharge
การถ่ายเทประจุ การทำให้วัตถุมีการเปลี่ยนแปลงประจุไฟฟ้า(Electrostatic Discharge)

วีดิโอ


Electrical induction
เหนี่ยวนำ การทำให้วัตถุมีการเปลี่ยนแปลงประจุไฟฟ้าElectrical Induction

  • การอัดประจุโดยการเหนี่ยวนำไม่จำเป็นต้องมีการสัมผัสกันระหว่างวัตถุ

  • ในวัตถุที่เป็นโลหะทรงกลมที่เป็นกลางทางไฟฟ้าจะมีประจุบวกและลบจำนวนเท่ากัน

  • เมื่อนำแท่งยางที่มีประจุมาใกล้ทรงกลมประจุในทรงกลมจะจัดเรียงตัวใหม่


  • เมื่อตัดเส้นลวดลงดินออกจะมีประจุบวกมากกว่าประจุลบในทรงกลมหรือเกิดการเหนี่ยวนำประจุบวกขึ้นในทรงกลม

  • เมื่อเคลื่อนแท่งยางออกอิเล็กตรอนจะเรียงตัวใหม่โดยทรงกลมยังมีประจุสุทธิเป็นบวก



การตรวจสอบวัตถุว่ามีประจุไฟฟ้าหรือไม่การตรวจสอบวัตถุว่ามีประจุไฟฟ้าหรือไม่

ต้องทำให้อิเล็กโตรสโคปเป็นกลางทางไฟฟ้าเสียก่อนโดยใช้นิ้วแตะที่ลูกพิธหรือแผ่นจานโลหะแล้วจึงนำวัตถุที่ต้องสงสัยไปใกล้กับอิเล็กโทรสโคป กรณีเป็นเป็นลูกพิธ ถ้าลูกพิธไม่เบี่ยงเบน แสดงว่าวัตถุนั้นเป็นกลางทางไฟฟ้า ถ้าลูกพิธ เบนเข้า แสดงว่าวัตถุนั้นมีประจุไฟฟ้า กรณีเป็นแผ่นโลหะ ถ้าขาของแผ่นโลหะไม่เปลี่ยนแปลง แสดงว่าวัตถุนั้นเป็นกลางทางไฟฟ้า ถ้าขาของแผ่นโลหะกางออกแสดงว่าวัตถุนั้นมีประจุไฟฟ้า


การตรวจสอบชนิดของประจุการตรวจสอบชนิดของประจุ

ต้องทำให้อิเล็กโตรสโคปมีประจุไฟฟ้าเสียก่อน ถ้าเป็นแบบแผ่นโลหะสังเกตจากขาทั้งสองกางออก แล้วจึงนำวัตถุที่มีประจุสงสัยเข้าไปใกล้กับอิเล็กโทรสโคป กรณีเป็นลูกพิธ ถ้าลูกพิธเบนเข้า แสดงว่าวัตถุนั้นมีประจุไฟฟ้าชนิดตรงข้ามกับลูกพิธ ถ้าลูกพิธเบนออก แสดงว่าวัตถุนั้นมีประจุไฟฟ้าชนิดเดียวกับลูกพิธ กรณีเป็นแผ่นโลหะ ถ้าขาของแผ่นโลหะกางออกมากขึ้น แสดงว่าวัตถุนั้นมีประจุชนิดเดียวกับอิเล็กโตรสโคป ถ้าขาของแผ่นโลหะหุบเข้า แสดงว่าวัตถุนั้นมีประจุชนิดตรงข้ามกับอิเล็กโตรสโคป


แรงระหว่างประจุและกฎของคูลอมบ์แรงระหว่างประจุและกฎของคูลอมบ์(Coulomb's law)

แรงที่เกิดระหว่างประจุไฟฟ้า มีทั้งแรงดูดและแรงผลัก และเป็นแรงต่างร่วม คือทั้งสองฝ่ายจะออกแรงกระทำซึ่งกันและกันด้วยขนาดของแรงที่เท่ากัน แต่มีทิศตรงข้ามกัน ระจุไฟฟ้าชนิดเดียวกันจะผลักกัน และประจุไฟฟ้าต่างชนิดกันจะดูดกัน

คูลอมบ์ได้ทำการทดลองพบว่า “แรงไฟฟ้าที่เกิดจะ

มากหรือน้อยขึ้นอยู่กับปริมาณประจุไฟฟ้า และ

ระยะห่างระหว่างประจุทั้งสอง โดยจะเป็นสัดส่วน

โดยตรงกับผลคูณของประจุแต่จะเป็นสัดส่วนผกผันกับ

กำลังสองของระยะทางระหว่างประจุคู่นั้น”

ชาร์ล ออกุสติน เดอ คูลอมบ์ (Charles Augustin de Coulomb) นักฟิสิกส์ ชาวฝรั่งเศส (เกิด พ.ศ. 2279)


  • keคือ ค่าคงตัวของคูลอมบ์

  • ke = 8.9875 x 109 N.m2/C2 =

  • คือ ค่าสภาพยอมของสุญญากาศ

  • = 8.8542 x 10-12 C2 / N.m2


เวกเตอร์ของแรงระหว่างประจุเวกเตอร์ของแรงระหว่างประจุ

  • เวกเตอร์ของแรงจะอยู่ในแนวเชื่อมต่อระหว่างประจุดังรูป

  • เวกเตอร์ของแรงระหว่างประจุชนิดเดียวกันจะมีทิศออกจากกัน

  • เวกเตอร์ของแรงระหว่างประจุต่างชนิดกันจะมีทิศเข้าหากัน

  • แรงระหว่างประจุจะเป็นไปตามกฎข้อที่ 3 ของนิวตันหรือ


หลักการซ้อนทับเวกเตอร์ของแรงระหว่างประจุ

  • แรงรวมของระบบที่มีหลายประจุจะเป็นไปตามหลักการซ้อนทับ (principle of superpositon) หรือ

  • ถ้าประจุมี 6 ประจุ แรงรวมที่ประจุที่ 1 มีค่าเป็น


ตัวอย่างที่ เวกเตอร์ของแรงระหว่างประจุ1

แท่งโลหะมีประจุไฟฟ้า +5.0 C จงหาจำนวนอิเล็กตรอนที่หลุดเข้ามาอยู่ในแท่งโลหะนี้ จนทำให้แท่งโลหะมีประจุ -3.0 C


ตัวอย่างที่ เวกเตอร์ของแรงระหว่างประจุ2

จงหาขนาดแรงไฟฟ้าระหว่างอิเล็กตรอนและโปรตอนของอะตอมไฮโดรเจนซึ่งอยู่ห่างกันประมาณ 5.3x10-11m แล้ว จงเปรียบเทียบกับขนาดแรงดึงดูดระหว่างมวลของอนุภาคทั้งสอง


ตัวอย่างที่ เวกเตอร์ของแรงระหว่างประจุ3

ประจุ 4 ตัว คือ A, B, C และ D วางเป็นแนวเส้นตรงห่างกันตำแหน่งละ 4 cm มีประจุ -2 C, 8 C, +4 C และ –12 C ตามลำดับ จงหาแรงลัพธ์ที่กระทำต่อประจุที่ตำแหน่ง C

A

D

B

C


ตัวอย่างที่ เวกเตอร์ของแรงระหว่างประจุ4

จงหาแรงลัพธ์ทางไฟฟ้าบนอนุภาค q3 ที่กระทำโดยอนุภาค q1 และ q2 ซึ่งวางอยู่ที่มุมของสามเหลี่ยมดังรูป กำหนดให้ q1=q3=5.0 C, q2= 2.0 C และa = 0.1 m


ตัวอย่างที่ เวกเตอร์ของแรงระหว่างประจุ5

ลูกพิธสองลูกขนาดเท่ากันมีมวล 0.1 กรัม ผูกด้วยเส้นด้ายยาว 1 เมตร เมื่อจับจุดกึ่งกลางเส้นด้ายแขวนไว้กับเพดาน แล้วให้ประจุแก่ลูกพิธทั้งสองเท่ากันและชนิดเดียวกัน ทำให้เกิดแรงผลักจนทำให้เส้นด้ายเอียงทำมุม 60 องศาต่อกัน ดังรูป ลูกพิธแต่ละลูกมีประจุไฟฟ้าเท่าใด


Electric field
สนามไฟฟ้า เวกเตอร์ของแรงระหว่างประจุ(Electric field)

Faradayเป็นผู้เสนอแนวความคิดของสนามไฟฟ้าโดยกล่าวว่าจะเกิดสนามไฟฟ้าขึ้นรอบๆ วัตถุที่มีประจุซึ่งเรียกว่า ประจุต้นกำเนิด (source charge ) โดยประจุนี้สามารถส่งแรงกระทำต่อประจุที่นำมาวาง เรียกว่าประจุทดสอบ (test charge)

ประจุทดสอบจะต้องมีค่าไม่มากเกินไป จนไปรบกวนประจุที่ก่อให้เกิดสนามไฟฟ้า


Electric field1
สนามไฟฟ้า เวกเตอร์ของแรงระหว่างประจุ(Electric field)

นิยามของสนามไฟฟ้า (E) เนื่องจากอิทธิพลของประจุต้นกําเนิด (Q) คือแรงที่กระทํากับประจุทดสอบ (F) ต่อขนาดของประจุทดสอบ q0นั้น

F


ทิศของสนามไฟฟ้าเวกเตอร์ของแรงระหว่างประจุ

ทิศทางของสนามไฟฟ้าคือทิศทางของแรงที่กระทำบนประจุทดสอบที่เป็นบวกดังรูป

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

ทิศสนามไฟฟ้าจากประจุบวก

ทิศสนามไฟฟ้าจากประจุลบ


Electric filed lines
เส้นสนามไฟฟ้า เวกเตอร์ของแรงระหว่างประจุ(electric filed lines)

เส้นสนามไฟฟ้าเป็นเส้นที่ใช้แสดงทิศทางของสนามไฟฟ้า สนามไฟฟ้าจะมีทิศในแนวเส้นสัมผัสกับเส้นสนามจํานวนเส้นสนามที่ทะลุผ่านพื้นที่ที่ตั้งฉากกับเส้นสนามแปรผันตรงกับขนาดหรือความเข้มของสนามไฟฟ้าในบริเวณนั้น บริเวณที่มีเส้นสนามอยู่ชิดกันมากจะมีค่าสนามไฟฟ้าสูงข้อควรระวังคือเส้นสนามบอกทิศทางของแรงที่กระทํากับประจุทดสอบแต่เส้นสนามไม่ใช่เส้นทางการเคลื่อนที่ของประจุทดสอบ

เส้นสนามไฟฟ้าที่บริเวณ A มีความเข้มมากกว่าบริเวณ B


คุณสมบัติของเส้นสนามไฟฟ้าคุณสมบัติของเส้นสนามไฟฟ้า

  • เส้นแรงไฟฟ้าจะมีทิศทางพุ่งออกจากประจุบวกและพุ่งเข้าสู่ประจุลบ

  • เส้นแรงไฟฟ้าจากประจุไฟฟ้าชนิดเดียวกัน ไมเสริมเป็นแนวเดียวกัน แต่จะเบนแยกจากกันเป็นแต่ละแนว ส่วนเส้นแรงไฟฟ้าจากประจุไฟฟ้าต่างชนิดกัน จะเสริมเป็นแนวเดียวกัน

  • เส้นแรงไฟฟ้าต้องไม่ตัดกัน

  • วัตถุที่เป็นตัวนำไฟฟ้าจะไม่มีเส้นแรงไฟฟ้าผ่านเนื้อวัตถุ แต่จะเริ่มที่ผิวและสิ้นสุดที่ผิว

  • เส้นแรงไฟฟ้าจะต้องตั้งฉากกับผิววัตถุ


Electric filed lines1
เส้นสนามไฟฟ้า คุณสมบัติของเส้นสนามไฟฟ้า(electric filed lines)

  • เส้นสนามไฟฟ้าจะออกจากประจุบวก ดังรูป

ประจุบวก


Electric filed lines2
เส้นสนามไฟฟ้า คุณสมบัติของเส้นสนามไฟฟ้า(electric filed lines)

  • เส้นสนามไฟฟ้าจะออกจากประจุบวกและเข้าสู่ประจุลบ ดังรูป

ประจุลบ


Electric filed lines3
เส้นสนามไฟฟ้า คุณสมบัติของเส้นสนามไฟฟ้า(electric filed lines)

  • สำหรับขั้วคู่ไฟฟ้าจำนวนเส้นสนามไฟฟ้าที่ออกจากประจุบวกจะเท่ากับที่เข้าสู่ประจุลบ

  • สำหรับประจุบวก 2 ประจุที่มีขนาดเท่ากัน จำนวนเส้นสนามไฟฟ้าที่ออกจากแต่ละประจุจะเท่ากัน


สนามไฟฟ้าเนื่องจากจุดประจุสนามไฟฟ้าเนื่องจากจุดประจุ

ในกรณีนี้จะพิจารณาเมื่อมีประจุ Q ปริมาณหนึ่งวางไว้ที่จุด ๆ หนึ่ง ค่าของสนามไฟฟ้าเนื่องจากประจุ +Q ณ จุดใด ๆ พิจารณาได้ดังนี้คือ นำประจุทดสอบ +q มาวางห่างจากประจุ +Q เป็นระยะ r แล้วมีแรง F กระทำต่อประจุ +q ตามรูป

แรงที่กระทำต่อประจุ q คือ

+Q

+q

r

F


ปัญหา สนามไฟฟ้าเนื่องจากจุดประจุ1

A มีประจุ +5 ไมโครคูลอมบ์ที่ตำแหน่ง x=0 B มีประจุ -10 ไมโครคูลอมบ์ ที่ตำแหน่ง x = 10 cm จงหาขนาดและทิศของสนามไฟฟ้าที่ตำแหน่ง x=-5 cm

A

B


ปัญหา สนามไฟฟ้าเนื่องจากจุดประจุ2

P

ประจุ q1=7.0 ไมโครคูลอมบ์ วางอยู่ที่จุดกำเนิดและประจุ q2= -5.0 ไมโครคูลอมบ์ วางอยู่ห่างจากจุดกำเนิดเป็นระยะ 0.3 เมตร บนแกน x ดังรูป จงหาสนามไฟฟ้าที่จุด P


จุดสะเทินไฟฟ้าสนามไฟฟ้าเนื่องจากจุดประจุ

คือจุดที่อยู่ในสนามไฟฟ้าแต่ไม่มีเส้นแรงไฟฟ้าผ่านทำให้ ณ จุดนั้นมีความเข้มสนามไฟฟ้าเป็นศูนย์ จุดสะเทินเนื่องจากประจุชนิดเดียวกัน จะอยู่ระหว่างประจุทั้งสองและใกล้ประจุที่น้อยกว่า จุดสะเทินเนื่องจากประจุต่างชนิดกัน จะอยู่นอกประจุและอยู่ด้านที่มีประจุน้อยกว่า


การเกิดจุดสะเทินไฟฟ้าการเกิดจุดสะเทินไฟฟ้า

จุดสะเทินจากประจุชนิดเดียวกัน

จุดสะเทินจากประจุต่างชนิดกัน


วัตถุ การเกิดจุดสะเทินไฟฟ้าA มีประจุ +4 ไมโครคูลอมบ์ วัตถุ B มีประจุ +16ไมโครคูลอมบ์ วางห่างกัน 30cm ตำแหน่งจุดสะเทินอยู่ห่างจากวัตถุ B เท่าใด

ปัญหา 3


ปัญหา การเกิดจุดสะเทินไฟฟ้า4

วัตถุ A มีประจุ +8 ไมโครคูลอมบ์ วางห่างจากวัตถุ B เป็นระยะ 30 เซนติเมตร ถ้าตำแหน่งจุดสะเทินห่างจากวัตถุ A เป็นระยะ 20 เซนติเมตร วัตถุ B จะต้องมีประจุประมาณเท่าใด


สนามไฟฟ้าเนื่องจากแผ่นประจุเดี่ยวขนาดใหญ่สนามไฟฟ้าเนื่องจากแผ่นประจุเดี่ยวขนาดใหญ่

แผ่นระนาบอนันต์มีความหนาแน่นประจุต่อหนึ่งหน่วยพื้นที่  สนามไฟฟ้าที่ตำแหน่งห่างจากแผ่นระนาบเป็นระยะ r คือ

จะเห็นว่าสนามไฟฟ้ากรณีนี้ไม่ขึ้นกับระยะ r


สนามไฟฟ้าระหว่างแผ่นประจุขนานขนาดใหญ่สนามไฟฟ้าระหว่างแผ่นประจุขนานขนาดใหญ่

เนื่องจากเส้นแรงไฟฟ้าต้องตั้งฉากกับผิววัตถุดังนั้นเส้นแรงไฟฟ้าภายในแผ่นคู่ขนานจึงขนานกันตลอด ทำให้ค่าความเข้มสนามไฟฟ้าระหว่างแผ่นขนานคงตัว แสดงว่าสนามไฟฟ้าสม่ำเสมอ (Uniform field) คือ

ส่วนด้านบนและด้านล่างของแผ่นระนาบขนาน มีทิศของสนามไฟฟ้าจากแผ่นระนาบทั้งสองในทิศสวนทางกัน ดังนั้นจะได้สนามไฟฟ้านอกบริเวณระหว่างแผ่นระนาบขนานมีค่าเป็นศูนย์ ดังรูป


พิจาณาแรงกระทำและสนามไฟฟ้าที่เกิดกับประจุทดสอบที่นำมาวางในบริเวณดังรูปพิจาณาแรงกระทำและสนามไฟฟ้าที่เกิดกับประจุทดสอบที่นำมาวางในบริเวณดังรูป

สรุปว่า

จะได้ว่าทิศของแรง ทิศของสนามไฟฟ้าจะมีทิศเดียวกัน สำหรับประจุทดสอบบวกที่นำมาวางในสนามไฟฟ้า และทิศของแรง ทิศของสนามไฟฟ้าจะมีทิศตรงข้ามกันสำหรับประจุทดสอบลบที่นำมาวางในสนามไฟฟ้า



ความเร่งของอนุภาคโปรตอนและอิเล็กตรอนความเร่งของอนุภาคโปรตอนและอิเล็กตรอนในสนามไฟฟ้าสม่ำเสมอ

a

q

+

Fe

mg


ปัญหา ความเร่งของอนุภาคโปรตอนและอิเล็กตรอน5

สนามไฟฟ้าสม่ำเสมอขนาด 104นิวตันต่อคูลอมบ์ มีทิศลงตามแนวดิ่ง ลูกพิทมวล 0.02 กรัม เคลื่อนที่ลงด้วยความเร่ง 2 เมตรต่อวินาที2 ลูกพิทมีอิเล็กตรอนเกินหรืออิเล็กตรอนขาดหายไป กี่ตัว


ปัญหา ความเร่งของอนุภาคโปรตอนและอิเล็กตรอน6

แผ่นโลหะมีประจุ 2 แผ่นวางห่างกัน 15 cm สมมติอยู่ในสุญญากาศ ดังรูป สนามไฟฟ้าระหว่างแผ่นโลหะมีค่าสม่ำเสมอ ขนาด 3000 N/C อิเล็กตรอนตัวหนึ่งถูกปล่อยจากจุดอยู่นิ่งที่จุด P จงหาว่า

1) อิเล็กตรอนใช้เวลาเท่าไร ในการเคลื่อนที่ไปจนถึงแผ่น A

2) อิเล็กตรอนมีอัตราเร็วท่าไร ก่อนถึงแผ่นโลหะ A

3) ถ้าเปลี่ยนเป็นโปรตอน จะเคลื่อนที่ไปถึงแผ่น A ได้หรือไม่ เพราะเหตุใด


ปัญหา ความเร่งของอนุภาคโปรตอนและอิเล็กตรอน7

จากรูป ลูกบอลขนาดเล็กมีมวล 0.40 kg จงหาชนิดและขนาดของประจุไฟฟ้าที่ทำให้เส้นเชือกเบาเอียงทำมุม  = 37 องศา ให้g เท่ากับ 10 m/s2


สนามไฟฟ้าเนื่องจากประจุที่ผิวทรงกลมสนามไฟฟ้าเนื่องจากประจุที่ผิวทรงกลม

ตัวนำทรงกลมตันหรือกลวงที่มีประจุไฟฟ้าอิสระ ประจุจะกระจายอยู่ที่ผิวของตัวนำทรงกลมอย่างสม่ำเสมอ ทำให้มองว่าทรงกลมนี้ประพฤติตัวเหมือนจุดประจุรวมกันอยู่จุดศูนย์กลางทรงกลม ถึงอย่างไรภายในทรงกลมจะไม่มีเส้นแรงไฟฟ้าผ่าน นั่นคือความเข้มสนามไฟฟ้าภายในทรงกลมเป็นศูนย์ และความเข้มสนามไฟฟ้ามากที่สุดที่ผิวทรงกลมและจะมีขนาดลดลงตามระยะห่างจากทรงกลม เมื่อต้องการหาสนามไฟฟ้าที่จุดใด ๆ ของทรงกลมรัศมี R หาได้ตามสมการ


สนามไฟฟ้าเนื่องจากประจุที่ผิวทรงกลมสนามไฟฟ้าเนื่องจากประจุที่ผิวทรงกลม

กำหนดให้ Q = ประจุไฟฟ้าที่ผิวทรงกลม

r = ระยะห่างจากจุดศูนย์กลางทรงกลม



ตัวนำทรงกลมรัศมี 10 cm มีประจุไฟฟ้า –20 ไมโครคูลอมบ์จงหาความเข้มสนามไฟฟ้า

1) ห่างจากจุดศูนย์กลางทรงกลม 5 cm

2) ที่ผิวทรงกลม

3) ห่างจากจุดศูนย์กลางทรงกลม 12 cm

ปัญหา 8


สมการของฟลักซ์ไฟฟ้า

  • โดยทั่วไปเราจะหาฟลักซ์ไฟฟ้าได้โดยการอินทิเกรต

  • ฟลักซ์ไฟฟ้ารวมที่ผ่านพื้นผิวทั้งหมดจะเท่ากับผลรวมของฟลักซ์ในแต่ละพื้นผิว:

  • หน่วยของฟลักซ์ไฟฟ้าคือ N-m2/C


ฟลักซ์ไฟฟ้าในผิวปิด เนื่องจากสนามไฟฟ้า จะมีค่าเป็น

  • ถ้าพื้นผิวปิดในบริเวณที่มีสนามไฟฟ้าเป็นดังรูป ฟลักซ์ไฟฟ้า ณ ตำแหน่งต่างๆ ของผิวปิดจะมีค่าแตกต่างกัน

  • จาก

ตำแหน่ง (1) :

ตำแหน่ง (2) :

ตำแหน่ง (3) :

  • ฟลักซ์ไฟฟ้าสุทธิ (net flux) ที่ผ่านผิวปิดใดๆ จะเท่ากับผลต่างระหว่างฟลักซ์ที่ออกจากผิวกับฟลักซ์ที่เข้าสู่ผิว


กฎของเกาส์ เนื่องจากสนามไฟฟ้า จะมีค่าเป็น

กฎของเกาส์ เป็นกฎที่กล่าวถึงความสัมพันธ์ระหว่างฟลักซ์ไฟฟ้า (จำนวนเส้นสนามไฟฟ้า) บนผิวปิดใดๆ กับประจุสุทธิที่อยู่ในผิวปิดนั้น

  • จำนวนเส้นสนามไฟฟ้าของสนาม E จะมีทิศชี้ออกและตั้งฉากกับผิวทรงกลม ณ ทุกๆ จุดและมีค่าเป็น

  • พื้นผิวดังกล่าวมีชื่อเรียกว่า ผิวเกาส์เซียน (Gaussian surface)


กฎของเกาส์ (ต่อ) เนื่องจากสนามไฟฟ้า จะมีค่าเป็น

  • กฎของเกาส์คือ

  • qinคือประจุสุทธิภายในผิวปิดและ E คือสนามไฟฟ้า ณ จุดต่างๆ บนผิวปิด

  • ในทางทฤษฎีแล้วกฎของเกาส์สามารถใช้ได้กับทุกชนิดของการกระจายของประจุ แต่ความเป็นจริงจะใช้ได้เฉพาะกรณีที่มีความสมมาตร


หลักการใช้กฎของเกาส์ เนื่องจากสนามไฟฟ้า จะมีค่าเป็น

  • เริ่มต้นต้องทำการเลือกพื้นผิวเกาส์เซียนให้ครอบคลุมบริเวณที่มีประจุที่เราสนใจ

  • พื้นผิวเกาส์เซียนควรเป็นพื้นผิวที่สามารถใช้ประโยชน์จากความสมมาตรซึ่งง่ายต่อการหาค่าของปริพันธ์เชิงพื้นผิว (surface integral)

  • เรามีอิสระในการเลือกพื้นผิวเกาส์เซียนซึ่งไม่จำเป็นต้องเป็นพื้นผิวจริง แต่ควรเลือกพื้นผิวที่ทำให้สนามไฟฟ้าบนพื้นผิวมีค่าคงตัว


ปัญหา เนื่องจากสนามไฟฟ้า จะมีค่าเป็น9

จงหาสนามไฟฟ้าเนื่องจากจุดประจุ q ณ ตำแหน่งรอบๆ ประจุ


ปัญหา เนื่องจากสนามไฟฟ้า จะมีค่าเป็น10

จงหาสนามไฟฟ้าจากประจุที่กระจายอย่างสม่ำเสมอบนทรงกลม


ปัญหา เนื่องจากสนามไฟฟ้า จะมีค่าเป็น11

จงหาสนามไฟฟ้าจากประจุที่กระจายอย่างสม่ำเสมอบนแผ่นประจุอนันต์ที่มีความหนาแน่นประจุต่อพื้นที่ 


พลังงานศักย์ไฟฟ้า เนื่องจากสนามไฟฟ้า จะมีค่าเป็น(Energy potential)

พลังงานศักย์ไฟฟ้า (Ep)

เมื่อนำประจุไฟฟ้า q วางไว้ในสนามไฟฟ้า จะเกิดแรงกระทำต่อไปประจุ q ทำให้ประจุเกิดการเคลื่อนที่ เมื่อประจุ q เกิดการเคลื่อนที่จะมีงานเกิดขึ้น งานที่เกิดขึ้นบนประจุ q เนื่องจากการกระทำของสนามไฟฟ้า เรียกว่า พลังงานศักย์ไฟฟ้า โดยพลังงานศักย์ไฟฟ้า ณ ตำแหน่งใด ๆ หาได้จากงานจากแรงภายนอกเพื่อเคลื่อนประจุ q จากระดับอ้างอิงไปยัง ณ ตำแหน่งนั้น

โดยเขียน

แทนพลังงานศักย์ของประจุหรืออนุภาคที่ตำแหน่ง A


พลังงานศักย์ไฟฟ้าของประจุในสนามไฟฟ้าสม่ำเสมอพลังงานศักย์ไฟฟ้าของประจุในสนามไฟฟ้าสม่ำเสมอ

พิจารณาประจุ +q ในสนามไฟฟ้าสม่ำเสมอ

ระดับ A เป็นระดับอ้างอิง B อยู่เหนือระดับอ้างอิงเป็นระยะ

งานในการเคลื่อนประจุ +q จากระดับอ้างอิง A ไป B จากแรงภายนอก จะได้ว่า

ดังนั้น พลังงานศักย์ไฟฟ้าของประจุ +q ณ ตำแหน่ง B ก็คือ


พลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียวพลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียว

จากรูป พลังงานศักย์ของประจุ q เนื่องจากประจุต้นกำเนิดสนามไฟฟ้า Q เมื่อมีการกระจัดจากตำแหน่ง B ไปยังตำแหน่ง A หาได้จาก


พลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียวพลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียว

จะได้ว่า

ถ้าให้จุด B อยู่ที่อนันต์ จะได้ว่า

นั่นคือ พลังงานศักย์ที่จุด A เป็น

จากสมการจะเห็นได้ว่าพลังงานศักย์เนื่องจากประจุต่างชนิดกันมีค่าเป็นลบ พลังงานศักย์เนื่องจากประจุชนิดเดียวกันมีค่าเป็นบวก การที่กำหนดให้เทียบพลังงานศักย์โดยให้จุดที่พลังงานศักย์เป็นศูนย์ที่ตำแหน่งอนันต์ เพราะแรงคูลอมบ์มีค่าเป็นศูนย์เมื่อระยะทางเป็นอนันต์


พลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียวพลังงานศักย์ของประจุในสนามไฟฟ้าเนื่องจากจุดประจุจุดเดียว

จะได้ว่า

ถ้าให้จุด B อยู่ที่อนันต์ จะได้ว่า

นั่นคือ พลังงานศักย์ที่จุด A เป็น

จากสมการจะเห็นได้ว่าพลังงานศักย์เนื่องจากประจุต่างชนิดกันมีค่าเป็นลบ พลังงานศักย์เนื่องจากประจุชนิดเดียวกันมีค่าเป็นบวก การที่กำหนดให้เทียบพลังงานศักย์โดยให้จุดที่พลังงานศักย์เป็นศูนย์ที่ตำแหน่งอนันต์ เพราะแรงคูลอมบ์มีค่าเป็นศูนย์เมื่อระยะทางเป็นอนันต์


พลังงานศักย์ไฟฟ้าภายในระบบพลังงานศักย์ไฟฟ้าภายในระบบ

พิจารณาประจุจุด Q1, Q2และ Q3 อยู่ที่ตำแหน่ง R1, R2และ R3

จากสมการสามารถแปลความหมายได้ดังนี้

ขณะมีประจุ Q1 เพียงประจุเดียว ยังไม่มีพลังงานศักย์ของระบบ เมื่อนำประจุ Q2เข้ามาในระบบ ระบบมีพลังงานศักย์


พลังงานศักย์ไฟฟ้าภายในระบบพลังงานศักย์ไฟฟ้าภายในระบบ

และเมื่อนำประจุ Q3 เข้ามาในระบบ พลังงานศักย์ของประจุ Q3 เนื่องจากประจุ Q1และ Q2 คือ

จะเห็นว่าพลังงานศักย์ไฟฟ้าภายในระบบคือ


ศักย์ไฟฟ้า พลังงานศักย์ไฟฟ้าภายในระบบ(Electric potential)

หรืออาจเขียนเป็น

กำหนดให้ V = ศักย์ไฟฟ้า มีหน่วยเป็น จูล/คูลอมบ์ หรือโวลต์

EP = พลังงานศักย์ไฟฟ้า มีหน่วยจูล

q = เป็นประจุไฟฟ้าในสนามไฟฟ้า

ถ้าระบบที่พิจารณามีประจุจุดจำนวน N ประจุ มีค่าประจุเป็น Q1, Q2, Q3, …, QN อยู่ที่ตำแหน่ง r1, r2, r3, …, rN ตามลำดับ ศักย์ไฟฟ้า ณ ตำแหน่งใด ๆ เท่ากับ

หรือ

ความต่างศักย์ไฟฟ้า


สรุปพลังงานศักย์ไฟฟ้าภายในระบบ ศักย์ไฟฟ้าภายในตัวนำทรงกลมที่มีประจุจะเท่ากันหมดและเท่ากับที่ผิวทรงกลม ดังนั้นถ้าต้องการหาศักย์ ไฟฟ้าภายในทรงกลมต้องย้ายประจุมาที่ผิวก่อนแล้วจึงหาค่าศักย์ไฟฟ้าจากสมการ

กราฟของศักย์ไฟฟ้าจากตัวนำทรงกลมที่มีประจุไฟฟ้าบวก ในฟังก์ชันของระยะทาง ดังแสดงในรูป


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ12

อิเล็กตรอนเคลื่อนที่ด้วยความเร็วต้น 4x107 m/s ขนานกับสนาม ไฟฟ้าขนาด 900 N/C ในทิศที่ทำให้ความเร็วลดลง จงหาระยะ ทางที่อิเล็กตรอนมีความเร็วเป็นศูนย์


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ13

อนุภาคมีประจุ 10 C เคลื่อนที่จากสภาพหยุดนิ่งเข้าไปยังบริเวณสนามไฟฟ้าสม่ำเสมอขนาด 50 V/m เมื่ออนุภาคเคลื่อนที่ได้ระยะทาง 1 เมตร ในทิศเดียวกับสนามไฟฟ้า อนุภาคนี้จะมีพลังงานจลน์เท่าไร


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ14

ประจุขนาด 50 C และ –20 C ห่างกันเป็นระยะ 40 cm จงหา

1) ศักย์ไฟฟ้าที่กึ่งกลางระหว่างประจุทั้งสอง

2) ศักย์ไฟฟ้า ณ จุดห่างจากประจุ 50 C เท่ากับ 40 cm และห่างจากประจุ –20 C เท่ากับ 16 cm

3) งานในการเคลื่อนประจุ 2 C จากตำแหน่ง 1) ไป 2)


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ15

ทรงกลมเล็ก ๆ มวล 0.2 กรัม มีประจุ 5x10-7C แขวนด้วยเส้นเชือกเบาอยู่ระหว่างแผ่นโลหะขนานห่างกัน 5 cm จงหาความต่างศักย์ระหว่างแผ่นขนานเพื่อทำให้เส้นเชือกที่แขวนเอียงทำมุม 60 องศา กับแนวดิ่ง


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ16

จากรูป สนามไฟฟ้าขนาด 12 V/m จงหางานที่ใช้ในการเคลื่อนประจุ +3.0 C จาก A ไป C ตามเส้นทาง ABC


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ17

จากรูป E คือสนามไฟฟ้าสม่ำเสมอขนาด 4x104โวลต์ต่อเมตร มีทิศดังรูป AB และ BC เท่ากับ 10 และ 5 เซนติเมตร ตามลำดับ จงหางานที่ทำในการเลื่อนประจุ -10-6 คูลอมบ์ จาก A ไป C


ปัญหา พลังงานศักย์ไฟฟ้าภายในระบบ18

ทรงกลมรัศมี 4 cm มีประจุ -10 C จงหาศักย์ไฟฟ้าที่ระยะห่างจากจุดศูนย์กลางทรงกลม 2, 4 และ 6 cm ตามลำดับ และหางานในการเคลื่อนอิเล็กตรอนจากตำแหน่งห่างจากจุดศูนย์กลางทรงกลม 6 cm ไปยังตำแหน่งห่างจากจุดศูนย์กลางทรงกลม 4 cm


ความจุไฟฟ้าพลังงานศักย์ไฟฟ้าภายในระบบ(capacitance)


+Qพลังงานศักย์ไฟฟ้าภายในระบบ

-Q

E

E

หรือ

V

Q  V


Q พลังงานศักย์ไฟฟ้าภายในระบบ V

Q = CV

C = Q/V

C เป็นค่าคงตัวเรียกว่า ความจุไฟฟ้า ดังนั้น

ความจุไฟฟ้า คือ ประจุบนตัวนำแผ่นใดแผ่นหนึ่ง

ต่อความต่างศักย์ระหว่างแผ่นตัวนำสองแผ่น มีหน่วย

เป็นคูลอมบ์ต่อโวลต์ หรือ ฟารัด (F)


พลังงานศักย์ที่สะสมในวัตถุที่มีประจุไฟฟ้าพลังงานศักย์ที่สะสมในวัตถุที่มีประจุไฟฟ้า

ถ้าความต่างศักย์ V ที่ต่ออยู่กับตัวเก็บประจุมีค่าเพิ่มขึ้น ประจุไฟฟ้า Q บนตัวเก็บประจุจะมีค่าเพิ่มขึ้นด้วย เมื่อนำประจุไฟฟ้า Q และความต่างศักย์ V ไปเขียนกราฟจะได้กราฟ ดังรูป

จะได้


ความจุไฟฟ้าของตัวเก็บประจุชนิดต่าง

ตัวเก็บประจุชนิดตัวนำทรงกลม


การถ่ายโอนประจุระหว่างตัวนำทรงกลมการถ่ายโอนประจุระหว่างตัวนำทรงกลม


การถ่ายโอนประจุระหว่างตัวนำทรงกลมการถ่ายโอนประจุระหว่างตัวนำทรงกลม


ความจุไฟฟ้าของตัวเก็บประจุชนิดต่าง

ตัวเก็บประจุชนิดแผ่นตัวนำคู่ขนาน

พิจารณาแผ่นตัวนำที่มีพื้นที่หน้าตัด A เท่ากันสองแผ่น มีประจุต่อหนึ่งหน่วยพื้นที่แผ่นละ  วางขนานกัน ห่างกันเป็นระยะ d ดังรูป


ความจุไฟฟ้าของตัวเก็บประจุชนิดต่าง

ตัวเก็บประจุชนิดแผ่นตัวนำทรงกลมซ้อน

พิจารณาตัวนำทรงกลมตันรัศมี raซ้อนอยู่ที่จุดศูนย์กลางตัวนำทรงกลมกลวงซึ่งมีรัศมี rbดังรูป

ความจุไฟฟ้า


ตัวนำทรงกลมเพียงลูกเดียวก็ทำหน้าที่เป็นตัวเก็บประจุเช่นกัน พิจารณาตัวนำทรงกลมซึ่งมีรัศมี ra ทำหน้าที่เสมือนเป็นตัวเก็บประจุทรงกลมซ้อนที่มีผิวทรงกลมกลวงรัศมี

ซ้อนอยู่ภายนอก

ในกรณีนี้

หรือ

เมื่อ a คือรัศมีของตัวนำทรงกลม


ตัวเก็บประจุหรือเครื่องควบแน่น

(capacitor หรือ condenser)


การต่อตัวเก็บประจุ ตัวเก็บประจุหรือเครื่องควบแน่น


ตัวเก็บประจุแบบอนุกรม (Series)


ตัวเก็บประจุแบบอนุกรม (Series)


ตัวเก็บประจุแบบอนุกรม (Series)


ตัวเก็บประจุแบบขนาน ตัวเก็บประจุแบบอนุกรม (Parallel)


ตัวเก็บประจุแบบขนาน ตัวเก็บประจุแบบอนุกรม (Parallel)


การต่อ ตัวเก็บประจุแบบอนุกรม เครื่องตัวเก็บประจุที่มีประจุอยู่เข้าด้วยกัน

เมื่อต่อตัวเก็บประจุที่มีประจุ 2 อัน หรือหลายอันเข้าด้วยกันเป็นวง ตัวเก็บประจุทั้งหมดนั้นจะกลายเป็นตัวเดียวกันมีความจุเพิ่มขึ้นเหมือนกับการต่อแบบขนานและเกิดการถ่ายเทประจุจนกว่าจะมีความต่างศักย์ไฟฟ้าเท่ากันเหมือนตัวนำทรงกลม

C1, Q1

C1, Q1

รูป ก

รูป ข

C2, Q2

C2, Q2


การต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกันการต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกัน

รูป ก คือ

จะได้

รูป ข คือ

จะได้ประจุหลังแตะทรงกลมแต่ละลูกคือ


ปัญหา การต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกัน1

ตัวเก็บประจุความจุ 5 และ 20 ไมโครฟารัด

นำมาต่อแบบขนานเข้ากับความต่างศักย์ 2,000 โวลต์ จะมีประจุไฟฟ้าที่ตัวเก็บประจุแต่ละตัวเท่าใด


ปัญหา การต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกัน2

ตัวเก็บประจุ A และ B มีความจุไฟฟ้า 6 และ 12 ไมโครฟารัด ต่ออนุกรมกันโดยให้จุดปลายทั้งสองต่อเข้ากับแหล่งกำเนิดไฟฟ้า 24 โวลต์ จงหาศักย์ไฟฟ้าที่ตัวเก็บประจุ


ตัวการต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกันตัวเก็บประจุมีค่าความจุ 4 μF, 6 μF, และ 12 μF จงหาความจุรวมเมื่อต่อตัวเก็บประจุทั้งสอง

1) อนุกรมทั้งหมด

2) ขนานทั้งหมด

3) 6 μF อนุกรมกับ 12 μF แล้วขนานกับ 4 μF

4) จากข้อ 3. ถ้าทั้งวงจรต่อเข้ากับความต่างศักย์ 20 โวลต์ จงหาประจุและความต่างศักย์ไฟฟ้าในตัวเก็บประจุแต่ละตัว

ปัญหา 3


ปัญหา การต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกัน4

ตัวเก็บประจุขนาด 20 ไมโครฟารัด มีความต่างศักย์ 12 โวลต์ เมื่อนำมาต่อขนานกับตัวเก็บประจุขนาด 30 ไมโครฟารัด ซึ่งแต่เดิมไม่มีประจุอยู่ จงหาความต่างศักย์และประจุไฟฟ้าที่ตัวเก็บประจุทั้งสอง


ปัญหา การต่อเครื่องควบแน่นที่มีประจุอยู่เข้าด้วยกัน5

จากวงจรในรูป เริ่มแรกตัวเก็บประจุ A มีความต่างศักย์ไฟฟ้า 2,000 โวลต์ และ B ไม่มีประจุ เมื่อสับสวิตซ์ S ลง ความต่างศักย์ของตัวเก็บประจุ A ลดลงเหลือ 1,600 โวลต์ ถ้าความจุของ A เท่ากับ 4.0x10-3F ความจุของ B มีค่ากี่ไมโครฟารัด และพลังงานที่สูญเสียจากการถ่ายเทประจุเป็นเท่าใด

S

B

A


จากรูป ถ้าตัวเก็บประจุ A มีประจุ 2 ไมโครคูลอมบ์ จงหาพลังงานไฟฟ้าสะสมในตัวเก็บประจุ B

ปัญหา 6


ad