This presentation is the property of its rightful owner.
Sponsored Links
1 / 103

冶金过程动力学 2 化学反应动力学基础 PowerPoint PPT Presentation


  • 134 Views
  • Uploaded on
  • Presentation posted in: General

冶金过程动力学 2 化学反应动力学基础. 2 化学反应动力学基础. 化学反应速率 化学反应速率方程 基元反应的速率公式 测定反应级数的一般方法 复杂反应的速率方程 稳态近似原理 温度对反应速率的影响 化学反应速率理论. 化学动力学是冶金过程动力学的基础。本章将在物理化学的基础上简要介绍化学反应动力学的基本概念和规律,了解这些基本概念和规律对于冶金动力学的研究具有重要的理论意义。. 2.1 化学反应速率 化学反应速率的定义,是以 单位空间 ( 体积)、 单位时间 内物料(反应物或产物)数量的变化来表达的,用数学形式表示为 :. 对于如下反应:

Download Presentation

冶金过程动力学 2 化学反应动力学基础

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


2

2


2

2


2


2

2.1

(


2

aAbBcCdD 2-1-4


2

(2-1-4)

cCdDaAbB0 2-1-8


2

C1InIIV

MII WIIW


2

V MI

I


2

S

(2-1-17)2-1-18)(2-1-17)(2-1-18)


2

2.2

aAbB P 2-2-1

CACBABABnn

kCA =1 CB1kk1/k


2

(2-2-2)

  • (2-2-1)ab

  • (2-2-1)=a =b=a =b(2-2-1)ab(2-2-1)

    n=0

    n1

    n=2

    n3


2

nn

(2-2-2)

(2-2-1)n


2

2-1

2O3 3O2 (2-2-3


2

Kk1/k-1

O3


2

2-2


2

1

2


2

NO3

2-2-17


2

kk2K

2-2-11

3

(2-2-21)


2

2-2-20[N2O2]=K[NO]2

(2-2-11)

232-2-10NO32


2


2

2.3

CH3COOC2H5OH CH3 COOC2 H5 OH

H2Cl2HCl


2

H2Cl2

2.3.1

C0(mol/L)Ct(mol/L)t(s)k(mol/ (Ls))


2

(2-3-2)CtkC0

C1/2C0t1/2(2-3-2)

t1/2COk


2

2.3.2


2

2.3.3

AB P

CA=CB = C


2

CA0 CB0tAB(b/a)tAB


2

2-3-12


2

2.3.4

ABC P

CA=CB=C


2

CACBCC

CA0CA = CB0CB = CC0CC

CB = CB0CA0CA (2-3-19

CCCC0CAOCA2-3-20)

2-3-192-3-202-3-18


2

2AB P

ABCA0CB0tt(CA02)(CB0)

2NOO2 2NO2

2NOBr2 2NOBr

2NOC12 2NOC1


2

2.3. 5 n

n:

2-1


2


2

2.4

2.4.1

(t0tlt2tn )(C0Cl C2Cn)f(C)f (C0)f(Cl)f(C2)f(C n)f (C)tf(C)f(C)f(C)1nC() f(C)1/C()f(C)=1C2f(C)t2-1f(C) =1/Ct2


2

:

  • f (C)=Ctn=0= -k

  • f (C) = 1nCtn=1= -k

  • f (C)= 1/Ct n=2= k

  • f (C) = In(CA/CB)tnA=1 nB=1=kA (CA0 CB0)a = b = 1

  • f(C) =1/C2tn=3=2K


2

2.4.2

1884:

2-4-1

t0t1tnC0C1Cnr0r1r nlnr1nCn1nk2-2


2

t0t1tnr0r1r n2-3

r


2

t0r0C01C02C0nr01r02 r0n(2-4-1):

lnr0InknInC0 (2-4-2)

lnr0InC0nInk. t0r0

C0r0


2

2.4.3

2. 3t1/2C0:


2


2

2.4.4

:

aAbB P

:

:

n + 2-4-5


2

CB>>CACB

CB(2-4-4)

:

CA >>CB:

(2-4-5)n(n=+)


2

2.5

2.5.1

C6H6Cl2 C6H5ClHCl

C6H5ClC12 C6H4 C12HCl

C6H4C12C12 C6H3C13HCl


2

1

t=0CA=CA0CB=0t=tABCCA CBCC(2-5-2)2-5-3


2

2-5-5)2-5-6)2-5-732-6


2

ABCCCBC(CB)CCtSSCSC


2

2.5.2


2

t=0CA=CA0CB=CC=0t =tCA CBCC


2

2-5-132-5-14

BCk1k2tACAk1k2k1>>k2B


2

2-5


2

2.5.3

N2O5


2


2

k1k-1t=0CA=CA0 CB=CB0t=tAxCA=CA0 -xCB=CB0+x


2

2-5-19

2-5-202-5-21


2

t0CABC0CA20CB20=0t=tABxCABC0-xCA2 = CB2=x/2

(2-5-25)2-5-26


2

1-12-21-22-12-6


2

2.6

k1CA0ts


2

BdCB/dt=0(tts)

dCB/dtCBCBCB CBmex

k1CA-k2CB=0(2-6-1)


2

A

B(2-6-1)

(2-6-2)

2-6-22-6-5


2

C

2-7k2k1k2>>k1


2

2.7

:

k52-7


2

(1) 2-7a

(2)

2-7b

(3)

2-7c

(4)

2-7d

(5) 2NOO2=

2NO22-7e


2

2.7.1

1884van' t Hoffl0K2-4van' t Hoff

kTT(K) kT+10(T+ 10) (K):

van' t Hoff


2

2.7.2

E,kJ/mol E E:

1nA2-7-6:


2

A(2-7-5)(2-

7-6)2-7-7)

Arrhenius

Ink1/Tk:


2

2.7.3

Arrhenius

:

Tk1k-1E1E -1

:


2

:

van' t Hoff

E1E 1=H (2-7-14)

H2-9


2

A + BCE1E1E -1E1E 1E E -1


2


2

2. 8

Arrhenius

2.8.1


2

zgv

vzg 2-8-2

(Boltzmann distribution law)E:

EArrhenius

A

BZAB


2

AB P

2-8-22-8-3(2-8-4):

nAnB1/cm3(mol/L)Cn N0Cn


2

(2-8-5) :

:


2

(2-8-11)

Arrhenius2-7-7Arrhe-niusAEABE


2

Arrhenius


2

A1011mol-1s-1

ABC ABC


2

ABC

CAB

A-BCA-B

ABC

ABC

Arrhenius(2-7-7)P


2

PP1110-9PP2-8


2

Arrhenius


2

2.8.2


2

ABC ABC

ABCdABdBC dAcABBCAC2-10


2

ABCABBCdABdBCdABdBCA BCB-CABABCBCUdABdBCdAc

U = U(dABdBCdAc) (2-8-19)


2

ABC:

dAcdABdBC2-8-20

U(dABdBC)(London):

U(dABdBC)Morse


2

AB:

De

de

a

3X+YZ+


2

LondonXYZ(Eyring)dABX1015XYZLondon(2-8-21)U(dABdBC)2-12


2

aA+BCdAB+Cb(A+B+C)cABCacd(reaction path)


2

2-13accaABC


2

K


2

C

k0.51.01


2

2-8-272-8-25


2

2-8-302-8-28

GHS


2

2-8-32

2-8-18


2

PAS


2

2-8-34


2


  • Login