1 / 27

A 1.6 Gbps, 3 mW CMOS Receiver for Optical Communication

A 1.6 Gbps, 3 mW CMOS Receiver for Optical Communication. Azita Emami-Neyestanak, Dean Liu, Gordon Keeler, Noah Helman and Mark Horowitz. Optical Interconnect Systems. Optical to electrical conversion Reshaping/retiming Data recovery Photo-diodes are used for conversion

thuyet
Download Presentation

A 1.6 Gbps, 3 mW CMOS Receiver for Optical Communication

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A 1.6 Gbps, 3 mW CMOS Receiver for Optical Communication Azita Emami-Neyestanak, Dean Liu, Gordon Keeler, Noah Helman and Mark Horowitz

  2. Optical Interconnect Systems • Optical to electrical conversion • Reshaping/retiming • Data recovery • Photo-diodes are used for conversion • Modeled as a single-ended current source & its Parasitic capacitor • Long-haul vs. short-haul A. Emami and M. Horowitz

  3. Receivers for Long-haul Links • Design goals • High sensitivity • High gain, low input noise current • Large bandwidth • Issues & trade-offs • Power dissipation • Area • Cost A. Emami and M. Horowitz

  4. Transimpedance Amp • Good sensitivity • Low input impedance • Needs high GxBW • Post amplification • Power & area Rf Iop A A2 Cp A. Emami and M. Horowitz

  5. Receivers for VLSI Photonics Vdet • Short-haul parallel links • Dense arrays of receivers • Low power, area • High bit rate • Cheap standard process • Diode clamp front end • Simple, low power, area • Needs differential input • Low sensitivity V1 V2 -Vdet A. Emami and M. Horowitz

  6. Outline • Introduction • Double Sampling Integrating Receiver • Implementation • Measurement Results • Conclusions A. Emami and M. Horowitz

  7. IDC=(I0+I1)/2 1 1 0 1 t0 t1 t2 time d0 d1 d2 Integrating Front-End Vdd di di=0aIop= I0 di=1aIop= I1 Iop Cp Vin A. Emami and M. Horowitz

  8. Vin(t2) < Vin(t1)ad2= 0 Vin(t1) Vin(t0) Vin(t2) IDC=(I0+I1)/2 Double Sampling, Data Resolution Vdd Vin(t1) > Vin(t0)ad1= 1 di Vin(t) 1 1 0 1 t0 t1 t2 time d0 d1 d2 A. Emami and M. Horowitz

  9. Double-Sampling Integrating RX • Integrates the optically generated current onto the parasitic input capacitor • Samples the voltage of the input node at two consecutive bit times • Compares these two voltages to decide the signal value A. Emami and M. Horowitz

  10. Vin(t1) d1 Vin(t2) Vin(t0) Vin(t0) d2 Vin(t2) Vin(t1) Vin(t1) Receiver’s Block Diagram Vdd + f1 Sense Amp - Vin C1 Photodiode Clk_1 f2 Offset + C2 Sense Amp - IDC Low-Pass Filter Clk_2 Double-Sampler Offset A. Emami and M. Horowitz

  11. Circuit Issues • Double sampling • Charge injection • Charge sharing • High resolution comparator design • Need accurate offset compensation • Comparator kick-back (each sample is used twice) • Generating IDC A. Emami and M. Horowitz

  12. Double Sampling • Duty-cycles < 50% for f1 and f2 • Clk_1,2 triggered after equalized charge coupling f1 f2 t0 t2 f2 Clk_1 f1 t1 Clk_1 Clk_2 Clk_2 A. Emami and M. Horowitz

  13. Clocked Sense Amplifier Vdd Clk Clk Clk OutP OutM A B 1mm 1mm 4mm 4mm InP InM x4 x4 x2 x8 x2 x8 [6] [0] [5] Offset[3] Offset[4] [7] [2] [1] • Offset compensated, 6mV resolution, +100mV range • Voltage controlled PMOS capacitors [Lee, et al., JSSC Nov’00] • Sizing trade-offs: power, area, speed and mismatches Clk A. Emami and M. Horowitz

  14. Clk_1 Eval. VB1 f1 B1 A1 Vin InP InM • When B1 is discharged, A2 is charged • Total zero kick-back Clk_2 VA2 A2 B2 InP InM Reset Kick-Back • Similar waveforms at A1 and B1 A. Emami and M. Horowitz

  15. Input Node Control • IDC=(I0+I1)/2 • DC-balanced data • Negative feedback • LPF(Vin) controls IDC • Sets DC value of Vin Din Vdd Vin IDC 1 1 0 1 Low-Pass Filter A. Emami and M. Horowitz

  16. Generating IDC • Filter-out DVin • Set IDC by DC level of Vin VBias Cz VSet Vin IDC Clk_b Clk VBias Cz Switched Cap RC network with added zero R C A. Emami and M. Horowitz

  17. PD/CP/Bias L2H L2H Input Clock FSM Timing • CMOS buffer-based dual-loop DLL [Wei, et al., JSSC Nov ’00] A. Emami and M. Horowitz

  18. CMOS Test Chip, GaAlAs Detectors After the flip-chip bonding A. Emami and M. Horowitz

  19. Optical Testing A. Emami and M. Horowitz

  20. Input Capacitance Measurement • Send n “1”s, followed by n “0”s • On-chip analog measurement of input node voltage, DVin • Measure the replica of IDC , when I0=0 • Cin= n x IDC / ((bit-rate) x DV) • Cin= 420 fF A. Emami and M. Horowitz

  21. Input Node Waveform Recovered Data Vin A. Emami and M. Horowitz

  22. Receiver Sensitivity • Minimum detectable optical power • Long sequences of “0”s and “1”s stress the receiver the most • Limited voltage headroom • Time variations of IDC A. Emami and M. Horowitz

  23. Receiver Sensitivity • Unbalanced input data shifts IDC • Can be used to measure the sensitivity • Smaller voltage swing in one direction I1 IDC I0 A. Emami and M. Horowitz

  24. Receiver Sensitivity • 1.6Gbps, DC-balanced data • 420fF input cap aI1-I0=11mA aDVin= 8 mV aP = 22mW (0.5A/W diode responsivity) A. Emami and M. Horowitz

  25. Dynamic Range • DC-balanced over N bits • In low power regime, N could be large • In high power regime, headroom constrains N • Leak out the extra current in high power regime A. Emami and M. Horowitz

  26. Receiver’s Performance • Supply voltage 2.5v • Technology National 0.25 mm CMOS • Input data rate 1.6 Gbps • Photodetector capacitance 270fF • Total input capacitance 420fF • Sensitivity (input photo current) 11mA • Power dissipation 3mW • Area 80mm × 50mm A. Emami and M. Horowitz

  27. Conclusion • The Integrating, TIA-less receiver: • Very low power & area • Good sensitivity & bandwidth • Has some clocking constraints • Needs accurate offset compensation • Suitable for very dense arrays of optical receivers on chip A. Emami and M. Horowitz

More Related