This presentation is the property of its rightful owner.
Sponsored Links
1 / 56

混凝土多轴强度和本构特性实验研究 PowerPoint PPT Presentation


  • 58 Views
  • Uploaded on
  • Presentation posted in: General

混凝土多轴强度和本构特性实验研究. 撰 写 : 邓 凤 学 专 业 : 结构工程 学 号 : 06111164. 1 、前言 2 、碾压混凝土的双轴受压试验 3 、 混凝土的三轴静力实验 4 、混凝土材料动态本构特性研究 5 、小结. 1 前言

Download Presentation

混凝土多轴强度和本构特性实验研究

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


3857653

06111164


3857653

1

2

3

4

5


3857653

1


3857653

2 [1]

2.1

2.1.1

150mm425


3857653

1.25328d3()2/0()0.250.500.751.00534


2 1 2 30t

1150mm145mm10mm10

2.1.2 30t


2 2 2 2 1 5 2

1-----

2-----

0-----

2

2.2 2.2.1 52.


3857653

2:(1)2/1=0()1/0=1(2)2/1=0.251/0=1.31.3(3)2/1=0.51/0=1.52/1=0.75 1/0=1.61.6


3857653

  • :

  • 1.21.52/1=0.751.6


3857653

2


3857653

  • a-----

  • 0-----

  • 10-----


2 2 2

:

1----1

2----2

0----

1/0

2/03

3

2.2.2


3857653

  • :

  • 3


3857653

  • =0.251/0=2.52.5

  • 13.54

  • 24


3857653

  • 3


3857653

  • 10----

  • 0----


2 2 3

=0.5014

1----

10----

1()

10

4

2.2.3


3857653

  • :

  • 30%

  • 2


3857653

  • 80%


3857653

3.1

5-

5 -

3 [2]


3857653

-(6)-

6 -


3857653

  • 3.2

  • 789


3857653


3857653

7

(123=10.10.1)

8

123=10.20.2)


3857653

9 (123=10.250.25)

789231789


3857653

  • 4

  • 4.14


3857653

10[3]

  • 10


3857653

  • 1112


3857653

12

11


3857653

  • 13 [4]


3857653

13(a)

  • 13

  • a


3857653

13(b)

  • 13

  • b


3857653


3857653

  • 4.2


3857653

  • 4.2.1

  • [5],[6],[7]


3857653

  • -[8][9]

  • [10][11][12][13][14]


3857653

  • 4.2.2[15][16][17]

  • ZWTZWT


3857653

  • 4.2.3

  • strain rate partition[18][19][20][21][22][23][24]


3857653

  • 4.2.4[25][26][27]


3857653

  • 4.2.5[28][29][30][31]


3857653

  • 4.2.6

  • Rossi-


3857653

  • -[32][33]Smeared cracking model[34]Cohesive crack model[35]Discrete cracking model[36]Fictious cracking modelBlunt crack modelnon-local model[37][38]

  • Rajendran[39]Bar-on[40]Grady [41]Vorobiev[42]


3857653

  • 520

  • 20


3857653

  • (1)

  • (2)MTSSHPBSHPB


3857653

  • (3)

  • (4)


3857653


3857653

  • [1] [J]19999

  • [2] D199911

  • [3] Lindholm U S. Techniques in Metals Research. Ed. Bunshan R T, New York Interscience: 1971, 5(part1)

  • [4] Li Q M, Meng H. About the dynamics strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International of Solids and Structures, 2003, 40:343~360

  • [5] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates. Material and structure, 1991, 144(24):425~450

  • [6] Malvar L J and John E C. Dynamic increase factors for concrete. Twenty-Eighth DDESB Seminar Orlando, FL, August 1998


3857653

  • [7] Malvar L J and Ross C A. Review of strain rate effects for concrete in tension. ACI Materials Journal, 1998, 95(6):735~739

  • [8] Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams. Technological Report No.28, ONR Contr No.562(10), Div. of Engng, Brown University, Providence, RI, 1957

  • [9] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc 7th Int Symp Ballistics, Am Def Prep Org (ADPA), The Hague, Netherlands, 1983:541~547

  • [10]. . , 2002,34():260~263

  • [11]. . , 1998, 18(4):349~357

  • [12]. . , 1998,19(2):109~116


3857653

[13], Al-Hassani S T S. . , 1999, :312~316

[14]. . , 1999

[15]. . , 1981

[16]. . , 1981

  • [17], , . . , , 1992

  • [18] Perzyna P. Fundamental problems in visco-plasticity. In: Advances in Applied Mechanics, 1966,9:243~377


3857653

  • [19] Perzyna P. Thermodynamic theory of viscoplasticity. Advances in Applied Mechanics, 1971,11:313~354

  • [20] Lemaitre J. and Chaboche J. L Aspect Phenomenologique de la Rupture Par Endommagement. J. Mecanique Applique, 1978,2(3):317~365

  • [21] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part 1- Yield criterion and Flow rules for porous ductile materials. Journal of Engineering Materials Technology, 1977,99:2~15

  • [22] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars. Journal of Physics Mechanics Solids, 1984,32:461~490


3857653

  • [23] Pearce C J. Computational aspects of the softening Hoffman plasticity model for quasi-brittle solids. MSC, University of Wales, Swansea, 1993

  • [24] Bicanic N, Pearce C J, Owen DRJ. Failure predictions of concrete like materials using softening Hoffman plasticity model. In: Mang H, Bicanic N, de Borst R, editors. Computational modeling of concrete structures, Eruo-C 1994, vol. 1, Swansea: Pineridge, 1994:185~198

  • [25]. . , 1995,16(1):22~30

  • [26], , . . , 1996, 9(3):47~55


3857653

  • [27], , , . (II). , 1995, 25(1):149~159

  • [28] Burlion N, Gatuingt F etc. Compaction and tensile damage in concrete: constitutive modeling and application to dynamics. Computer Methods in Applied Mechanics and Engineering, 2000,183:291~308

  • [29]. . , 2002

  • [30] Budiansky B, O'Connel R J. Elastic moduli of a cracked solid. International Journal of Solids and Structures, 1976,12:81~97


3857653

  • [31] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part 1- Yield criterion and Flow rules for porous ductile materials. Journal of Engineering Materials Technology, 1977,99:2~15

  • [32] Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design. 1968, 7(4):334~344

  • [33] Beshara F. Smeared crack analysis for reinforced concrete structures under blast-type loading. Engineering Fracture Mechanics, 1993,45(1):119~140


3857653

  • [34] Lu Y, Xu K. Modeling of dynamic behavior of concrete materials under blast loading. International Journal of Solids and Structures, 2004, 41: 131~143

  • [35] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams. Journal of ACI, 1967, 64(2):152~163

  • [36] Hillerborg A, Modeer M and Petersson P E. Analysis of crack formation and crack growth by means of fracture mechanics and finite element. Cement and Concrete Research, 1976(6):773~782

  • [37] Bazant Z P, Lin P B. Non-local yield limit degradation. International Journal for Numerical Method in Engineering, 1987, 26:1805~1823


3857653

  • [38] Bazant Z P. Non-local damage theory based on micromechanics crack interactions. Journal of Engineering Mechanics, ASCE, 1994,120:593~617

  • [39] Rajendran A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading. International Journal of impact Engineering, 1994,15(6):749~768

  • [40] Bar-on E, Rubin M B, Yankelevsky D Z. Thermomechanical constitutive equations for the dynamic response of ceramics. International Journal of Solids and Structures, 2003,40:4519~4548


3857653

  • [41] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Scienecs, 1980,17:147~157

  • [42] Vorobiev O Y, Antoun T H, Lomov I N, et al. A strength and damage model for rock under dynamic loading [A]. Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. New York: Amer Inst Physics, 2000:317~320


  • Login