Slide1 l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 28

Modeling and optimization of processes of bioethanol production with Mixed Integer Process SYNthesizer MIPSYN PowerPoint PPT Presentation


  • 126 Views
  • Uploaded on
  • Presentation posted in: General

Faculty of Chemistry and Chemical Engineering University of Maribor, Slovenia. Modeling and optimization of processes of bioethanol production with Mixed Integer Process SYNthesizer MIPSYN. Lidija Čuček, Zdravko Kravanja . Summer Workshop, Veszprém 2009. WHY BIOETHANOL ??.

Download Presentation

Modeling and optimization of processes of bioethanol production with Mixed Integer Process SYNthesizer MIPSYN

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Slide1 l.jpg

Faculty of Chemistry and Chemical Engineering

University of Maribor, Slovenia

Modeling and optimization of processes of bioethanol production with Mixed Integer Process SYNthesizer

MIPSYN

Lidija Čuček, Zdravko Kravanja

Summer Workshop, Veszprém 2009


Slide2 l.jpg

WHY BIOETHANOL ??

  • 1. Fossil fuels are non-renewable

  • 2. Growing concern about global warming

  • 3. Possible disruption in oil supply

  • 4. Alternative to gasoline, renewable energy

  • 5. The most important long-term objectives of the European Union and United States in the energy sector are:

  • Achieving independence of fossil fuel energy supplies

  • Achieving substantial improvement of energy efficiency of the whole supply chain from production, distribution, to consumption, while minimizing emissions and waste

  • Achieving 20 % increase in the share of renewable energy (RES) by 2020

  • The share of renewable energy in all modes of transport has to be at least 10 % by 2020

Summer Workshop, Veszprém 2009


Slide3 l.jpg

RAW MATERIALS

  • Bioethanol can be produced by fermentation of:

    • Sugars (molasses),

    • Starchy raw materials (corn, potato)

    • Lignocellulose (wood, agricultural residues, municipal solid waste)

First-generation biofuels: produced by fermentation of plants containing starch or sugar.

This production has a lot of downsides: plants are mainly food crops, affection of the supply of population with food products, limited quantity, affecting biodiversity, may cause more GHG than fossil fuels, using chemicals for plant production, impact on drinking water supply,...

Second-generation biofuels: produced by fermentation of lignocelluloses (agricultural residues, forestry waste, fast-growing energy crops...). Many technical and economic issues related to their use before 2020.

Third-generation biofuels: produced from algae, sigle-celled aquatic organisms.

Summer Workshop, Veszprém 2009


Slide4 l.jpg

OUR GOAL

  • Problems with using bioethanol:

  • Usage requires modifications to the engines

  • Consumption in engines is about 51 % higher compared to gasoline

  • Costs for bioethanol production are very high (investment, costs of raw materials , etc.)

Therefore it is necessary to develop effective, economical and environment friendly technologies of bioethanol production.

Consumption of raw materials, energy and water should be very carefully analyzed, planed and optimized.

Development and application of optimization methods are becoming necessary in the technique.

Goal: Detailed synthesis and optimization of various production processes of bioethanol production from different raw materials.

Summer Workshop, Veszprém 2009


Slide5 l.jpg

GENERAL OVERVIEW OF WORK

  • Modeling and optimization was performed for ethanol

  • production from:

  • starchy raw materials (corn, potato), dry milling process

  • sugars (molasses), direct fermentation

  • lignocelluloses:

  • from corn stover, acid prehydrolysis and enzymatic hydrolysis

  • from wheat straw, ammonia fiber explosion (AFEX) and

  • from wood chips, gasification and subsequent fermentation of the produced syngas

Superstructures of the processes are modeled as MINLP problems, which include both discrete (topology) and continuous variables (operating conditions, dimensions of the process units).

Synthesis was caried out with and without heat integration.

Different alternatives with respect to the separation of solids and liquids and alternatives to the dehydration of ethanol.

Summer Workshop, Veszprém 2009


Slide6 l.jpg

STARCH-BASED PROCESS

Summer Workshop, Veszprém 2009


Slide7 l.jpg

SUGAR-BASED PROCESS

Summer Workshop, Veszprém 2009


Slide8 l.jpg

ACID PREHYDROLYSIS PROCESS

Summer Workshop, Veszprém 2009


Slide9 l.jpg

AFEX PROCESS

Summer Workshop, Veszprém 2009


Slide10 l.jpg

THERMOCHEMICAL PROCESS

Summer Workshop, Veszprém 2009


Slide11 l.jpg

MIPSYN

Optimization was performed with equation-oriented process synthesizer MIPSYN.

  • package performs MINLP optimization on superstructures for process flowsheet

  • enables automated execution of simultaneous topology and parameter optimization of processes

Modified OA/ER algorithm and modeling and decomposititon (M/D) strategy

  • The computer package MIPSYN enabled us to optimize the chemical processes

Processes producing fuel ethanol from biomass are biochemical processes.

Completion of MIPSYN’s library PROSLIB with modules for synthesis of the biochemical processes

Summer Workshop, Veszprém 2009


Slide12 l.jpg

MODUL - WASHER

* ===========================

* = W A S H I N G =

* ===========================

EQUATIONS

WASHWA(WASH,COMPON) TOTAL STREAM OF WASHING WATER

WASHCB(WASH,COMPON) COMPONENT BALANCE AT WASHING

WASHT(IN,WASH) INLET TEMPERATURE RELATION AT WASHING

WASHP(IN,WASH) INLET PRESSURE RELATION AT WASHING

WASHSIZE(WASH) SIZE VARIABLE ;

WASHWA(WASH,COMPON)$EXIST(WASH)..

F('IN-2',WASH) =E= WASHMIN*WASHFRAC*F('IN-1',WASH);

WASHCB(WASH,COMPON)$EXIST(WASH)..

FC('OUT-1',WASH,COMPON) =E= SUM(IN$RELIOB(IN,WASH),FC(IN,WASH,COMPON));

WASHT(IN,WASH)$(RELIOB(IN,WASH)AND EXIST(WASH))..

T('OUT-1',WASH) =E= T(IN,WASH);

WASHP(IN,WASH)$(RELIOB(IN,WASH)AND EXIST(WASH))..

P('OUT-1',WASH) =E= P(IN,WASH);

WASHSIZE(WASH)$EXIST(WASH)..

sizes(wash)*SIZE(WASH) =E= AREA(WASH) ;

Summer Workshop, Veszprém 2009


Slide13 l.jpg

MODUL – FLOTATION UNIT

* ===========================

* = F L O T A T I O N =

* ===========================

EQUATIONS

FLOTCBH(FLOT) COMPONENT BALANCE FOR HYDROPHOBIC MOLECULE

FLOTCBM(FLOT) COMPONENT BALANCE FOR WATER IN TOP

FLOTCB(FLOT,COMPON) COMPONENT BALANCE FOR FLOTATION

FLOTT(OUT,FLOT) TEMPERATURE RELATION FOR OUT

FLOTP(OUT,FLOT) PRESSURE RELATION FOR OUTLET

FLOTSIZE(FLOT) SIZE VARIABLE ;

FLOTCBH(FLOT)$EXIST(FLOT)..

FC('OUT-1',FLOT,'PROT') =E= FLOTREC*FC('IN-1',FLOT,'PROT');

FLOTCBM(FLOT)$EXIST(FLOT)..

FC('OUT-1',FLOT,'WA') =E= FLOTREC*FLOTMOIST*FC('IN-1',FLOT,'PROT');

FLOTCB(FLOT,COMPON)$EXIST(FLOT)..

FC('OUT-2',FLOT,COMPON) =E= FC('IN-1',FLOT,COMPON)-FC('OUT-1',FLOT,COMPON);

FLOTT(OUT,FLOT)$(EXIST(FLOT) AND RELIOB(OUT,FLOT))..

T(OUT,FLOT) =E= T('IN-1',FLOT);

FLOTP(OUT,FLOT)$(EXIST(FLOT) AND RELIOB(OUT,FLOT))..

P(OUT,FLOT) =E= P('IN-1',FLOT);

FLOTSIZE(FLOT)$EXIST(FLOT)..

sizes(flot)*SIZE(FLOT) =E= F('IN-1',FLOT)*fs*3.6;

Summer Workshop, Veszprém 2009


Slide14 l.jpg

MODUL – ADSORBER I

* =============================

* = A D S O R P T I O N =

* =============================

EQUATIONS

ADSSIZE(ADS) REQUIRED BED SIZE

ADSMBETHO(ADS,COMPON) FLOW BALANCE FOR ETHANOL FOR OUTLET

ADSCBOUT(ADS,COMPON) COMPONENT BALANCE FOR OUTLET 2

ADSCBWA(ADS,COMPON) COMPONENT BALANCE FOR NON-ADSORBED WATER

ADSCBWAADS(ADS,COMPON) COMPONENT BALANCE FOR ADSORBED WATER

ADSTB(ADS) TOTAL BALANCE FOR ADSORBENT

ADSCB(ADS,COMPON) ADDITIVE COMPONENT BALANCE IN ADSORBER

ADSFCPH(ADS,COMPON) evaluation of FCPH

QHPEQ(ADS) ENTHALPY OF STREAM

ADSHB(ADS) HEAT BALANCE

ADSP1(ADS) PRESSURE RELATION FOR OUTLET 1

ADSP2(ADS) PRESSURE RELATION FOR OUTLET 2

ADST(OUT,ADS) TEMPERATURE RELATION ;

ADSSIZE(ADS)$(EXIST(ADS) AND (NOT MILP))..

SIZE(ADS)*sizes(ads) =E= ADSSATTIME*F('IN-2',ADS)*fs

$BATINCLUDE "P_LINEAR.INC" ADS ;

ADSMBETHO(ADS,COMPON)$(EXIST(ADS) AND (ORD(COMPON) EQ 6))..

FC('OUT-1',ADS,COMPON) =E= FC('IN-1',ADS,COMPON);

ADSCBOUT(ADS,COMPON)$(EXIST(ADS) AND (ORD(COMPON) NE 1) AND (ORD(COMPON) NE 6))..

FC('OUT-2',ADS,COMPON) =E= FC('IN-2',ADS,COMPON);

ADSCBWA(ADS,COMPON)$(EXIST(ADS) AND (ORD(COMPON) EQ 1) AND (NOT MILP))..

FC('OUT-1',ADS,COMPON) =E= (1.-ADSREMWA)*FC('IN-1',ADS,COMPON)

$BATINCLUDE "P_LINEAR.INC" ADS ;

Summer Workshop, Veszprém 2009


Slide15 l.jpg

MODUL – ADSORBER II

ADSCBWAADS(ADS,COMPON)$(EXIST(ADS) AND (ORD(COMPON) EQ 1) AND (NOT MILP))..

FC('OUT-2',ADS,COMPON) =E= ADSREMWA*FC('IN-1',ADS,COMPON)+

FC('IN-2',ADS,COMPON)

$BATINCLUDE "P_LINEAR.INC" ADS ;

ADSTB(ADS)$(EXIST(ADS) AND (NOT MILP))..

F('IN-2',ADS)*fs =E= (1./ADSPOT)*ADSREMWA*FC('IN-1',ADS,'WA')*fcs('wa')

$BATINCLUDE "P_LINEAR.INC" ADS ;

ADSCB(ADS,COMPON)$EXIST(ADS)..

SUM(OUT$RELIOB(OUT,ADS), FC(OUT,ADS,COMPON)) =E=

SUM(IN$RELIOB(IN,ADS), FC(IN,ADS,COMPON));

ADSFCPH(ADS,COMPON)$(EXIST(ADS) AND (ORD(COMPON) EQ 1))..

FCPH(ADS)*fcphs(ads) =E= FC('IN-1',ADS,COMPON)*fcs(compon) * DHADS;

QHPEQ(ADS)$(EXIST(ADS) AND (NOT MILP))..

QHP(ADS)*qhps(ads) =E= ADSREMWA* FCPH(ADS)*fcphs(ads)

$BATINCLUDE "P_LINEAR.INC" ADS ;

ADSHB(ADS)$(EXIST(ADS) AND (NOT HIFL) AND (NOT HENFL))..

QC(ADS)*qcs(ads) =E= 3600. * NHOUR * 1.0E-9 * QHP(ADS)*qhps(ads);

ADSP1(ADS)$EXIST(ADS).. P('OUT-1',ADS) =E= P('IN-1',ADS);

ADSP2(ADS)$EXIST(ADS).. P('OUT-2',ADS) =E= P('IN-1',ADS);

ADST(OUT,ADS)$(EXIST(ADS) AND RELIOB(OUT,ADS))..

T(OUT,ADS) =E= T('IN-2',ADS);

Summer Workshop, Veszprém 2009


Slide16 l.jpg

MODUL – RECTIFIER COLUMN I

* =====================================

* = R E C T I F I E R C O L U M N =

* =====================================

EQUATIONS

RECCB(REC,COMPON) ADDITIVE COMPONENT BALANCE IN RECTIFIER COLUMN

RECTOPH(REC,WE) COMPONENT BALANCE FOR HEAVY KEY - TOP

RECTOPL(REC,WE) COMPONENT BALANCE FOR LIGHT KEY - TOP

RECBOTH(REC,WE) COMPONENT BALANCE FOR HEAVY KEY - BOTTOM

RECBOTL(REC,WE) COMPONENT BALANCE FOR LIGHT KEY - BOTTOM

RECPT(REC) OUTLET PRESSURE RELATION (TOP)

RECPB(REC) OUTLET PRESSURE RELATION (BOTTOM)

NTHEOREC(REC) THEORETICAL NUMBER OF TRAYS

NACTREC(REC) ACTUAL NUMBER OF TRAYS

RECMFTOP(REC,WE) RELATION OF MOL AND MASS FRACTIONS FOR OUT TOP

RECANTATOP(REC,WE) ANTOINE EQUATION FOR OUT TOP

RECMFBOT(REC,WE) RELATION OF MOL AND MASS FRACTIONS FOR OUT BOTTOM

RECANTABOT(REC,WE) ANTOINE EQUATION FOR OUTLET BOTTOM

RECMFCL(REC) MOL FRAC IN THE CONDENSED VAPOR FOR LIGHT

RECMFCH(REC) MOL FRAC IN THE CONDENSED VAPOR FOR HEAVY

RECXC(REC,WE) RELATION OF MOL AND MASS FRACTION IN THE CONDENSER

CONDHVREC(REC,WE) HEAT OF VAPORIZATION OF COMPONENTS IN CONDENSER

FCPHREC(RECC) evaluation of FCPH IN CONDENSER

QCONDREC(RECC) ENTHALPY OF HOT STREAM IN CONDENSER

RECCONDHB(RECC) HEAT BALANCE IN CONDENSER

REBHVREC(REC,WE) HEAT OF VAPORIZATION OF COMPONENTS IN REBOILER

FCPCREC(RECR) evaluation of FCPC IN REBOILER

QREBREC(RECR) ENTHALPY OF COLD STREAM IN REBOILER

RECREBHB(RECR) HEAT BALANCE IN REBOILER

RECSIZE(REC) SIZE VARIABLE

;

Summer Workshop, Veszprém 2009


Slide17 l.jpg

MODUL – RECTIFIER COLUMN II

RECCB(REC,COMPON)$EXIST(REC)..

SUM(OUT$RELIOB(OUT,REC), FC(OUT,REC,COMPON)) =E= FC('IN-1',REC,COMPON);

RECTOPH(REC,WE)$(EXIST(REC) AND DHKEY(REC,WE) AND (NOT MILP))..

FC('OUT-1',REC,WE) =E= DHREC(REC)*FC('IN-1',REC,WE)

$BATINCLUDE "P_LINEAR.INC" REC ;

RECTOPL(REC,WE)$(EXIST(REC) AND DLKEY(REC,WE))..

FC('OUT-1',REC,WE) =E= DLREC(REC)*FC('IN-1',REC,WE);

RECBOTH(REC,WE)$(EXIST(REC) AND DHKEY(REC,WE) AND (NOT MILP))..

FC('OUT-2',REC,WE) =E= (1.-DHREC(REC))*FC('IN-1',REC,WE)

$BATINCLUDE "P_LINEAR.INC" REC ;

RECBOTL(REC,WE)$(EXIST(REC) AND DLKEY(REC,WE))..

FC('OUT-2',REC,WE) =E= (1.-DLREC(REC))*FC('IN-1',REC,WE);

RECPT(REC)$EXIST(REC)..

P('OUT-1',REC) =E= P('IN-1',REC);

RECPB(REC)$EXIST(REC)..

P('OUT-2',REC) =E= P('IN-1',REC);

NTHEOREC(REC)$(EXIST(REC) AND (NOT MILP))..

NTHEO(REC) =E=

LOG((DLREC(REC)/(1.-DLREC(REC)))*((1-DHREC(REC))/DHREC(REC)))/LOG(AVEVLT)

$BATINCLUDE "P_LINEAR.INC" REC ;

NACTREC(REC)$(EXIST(REC) AND (NOT MILP))..

NACT(REC) =E= (NTHEO(REC)-1.)/TRAYEFF

$BATINCLUDE "P_LINEAR.INC" REC ;

Summer Workshop, Veszprém 2009


Slide18 l.jpg

MODUL – RECTIFIER COLUMN III

RECMFTOP(REC,WE)$(EXIST(REC) AND (NOT MILP))..

MF('OUT-1',REC,WE)*SUM(WE1, FC('OUT-1',REC,WE1)/MOLWT(WE1))

=E= FC('OUT-1',REC,WE)/MOLWT(WE)

$BATINCLUDE "P_LINEAR.INC" REC ;

RECANTATOP(REC,WE)$(EXIST(REC) AND (NOT MILP) AND DLKEY(REC,WE))..

EXP(ANTA(WE)-ANTB(WE)/(ANTC(WE)+ T('OUT-1',REC)*100.)) =E=

(P('OUT-1',REC)-DP/2.)*7600.*

(MF('OUT-1',REC,'WA')*AVEVLT + MF('OUT-1',REC,'ETHO'))

$BATINCLUDE "P_LINEAR.INC" REC ;

RECMFBOT(REC,WE)$(EXIST(REC) AND (NOT MILP))..

MF('OUT-2',REC,WE)*SUM(WE1, FC('OUT-2',REC,WE1)/MOLWT(WE1))

=E= FC('OUT-2',REC,WE)/MOLWT(WE)

$BATINCLUDE "P_LINEAR.INC" REC ;

RECANTABOT(REC,WE)$(EXIST(REC) AND (NOT MILP) AND DHKEY(REC,WE))..

EXP(ANTA(WE)-ANTB(WE)/(ANTC(WE)+ T('OUT-2',REC)*100.))*

(MF('OUT-2',REC,'WA') + AVEVLT*MF('OUT-2',REC,'ETHO')) =E=

(P('OUT-2',REC)+DP/2.)*7600.

$BATINCLUDE "P_LINEAR.INC" REC ;

RECMFCL(REC)$(EXIST(REC) AND (NOT MILP))..

MFC(REC,'ETHO') =E= MF('OUT-1',REC,'ETHO')*(P('OUT-1',REC)-DP/2.)*7600./

EXP(ANTA('ETHO')-ANTB('ETHO')/(ANTC('ETHO')+T('OUT-1',REC)*100.))

$BATINCLUDE "P_LINEAR.INC" REC ;

RECMFCH(REC)$EXIST(REC)..

MFC(REC,'WA') =E= 1.- MFC(REC,'ETHO') ;

Summer Workshop, Veszprém 2009


Slide19 l.jpg

MODUL – RECTIFIER COLUMN IV

RECXC(REC,WE)$(EXIST(REC) AND (NOT MILP))..

XC(REC,WE)*SUM(WE1,MFC(REC,WE1)*MOLWT(WE1)) =E= MFC(REC,WE)*MOLWT(WE)

$BATINCLUDE "P_LINEAR.INC" REC ;

CONDHVREC(REC,WE)$(EXIST(REC) AND (NOT MILP))..

DHV('OUT-1',REC,WE) =E= (HV(WE)/MOLWT(WE))*

((TC(WE)-T('OUT-1',REC)*100.)/(TC(WE)-TB(WE)))**NWATSON

$BATINCLUDE "P_LINEAR.INC" REC ;

FCPHREC(RECC)$SUM(REC$(ORD(REC) EQ ORD(RECC)), EXIST(REC) AND (NOT MILP))..

fcphs(recc)*FCPH(RECC) =E=

SUM(REC$(ORD(REC) EQ ORD(RECC)), F('OUT-1',REC)*fs*REFLUX*

SUM(WE, XC(REC,WE)*DHV('OUT-1',REC,WE)))

$BATINCLUDE "P_LINEAR.INC" RECC ;

QCONDREC(RECC)$SUM(REC$(ORD(REC) EQ ORD(RECC)), EXIST(REC) AND CONDFL(RECC))..

QHP(RECC)*qhps(recc) =E= fcphs(recc)*FCPH(RECC)*100.*0.01;

RECCONDHB(RECC)$SUM(REC$(ORD(REC) EQ ORD(RECC)), EXIST(REC))..

QC(RECC) =E= 3600.*NHOUR*1.0E-9 * QHP(RECC)*qhps(recc);

REBHVREC(REC,WE)$(EXIST(REC) AND DHKEY(REC,WE) AND (NOT MILP))..

DHV('OUT-2',REC,WE) =E= (HV(WE)/MOLWT(WE))*((TC(WE)-T('OUT-2',REC)*100.)/

(TC(WE)-TB(WE)))**NWATSON

$BATINCLUDE "p_linear.inc" REC ;

FCPCREC(RECR)$SUM(REC$(ORD(REC) EQ ORD(RECR)), EXIST(REC) AND (NOT MILP))..

FCPC(RECR)*fcpcs(recr) =E=

SUM(REC$(ORD(REC) EQ ORD(RECR)),(F('OUT-1',REC)*fs*REFLUX-F('OUT-2',REC)*fs)*

SUM(WE$DHKEY(REC,WE), DHV('OUT-2',REC,WE)))

$BATINCLUDE "P_LINEAR.INC" RECR ;

Summer Workshop, Veszprém 2009


Slide20 l.jpg

MODUL – RECTIFIER COLUMN IV

QREBREC(RECR)$SUM(REC$(ORD(REC) EQ ORD(RECR)), EXIST(REC) AND EVAPFL(RECR))..

QCP(RECR)*qcps(recr) =E= 100.*0.01*FCPC(RECR)*fcpcs(recr);

RECREBHB(RECR)$SUM(REC$(ORD(REC) EQ ORD(RECR)), EXIST(REC))..

QH(RECR) =E= 3600.*NHOUR*1.0E-9 * QCP(RECR)*qcps(recr);

RECSIZE(REC)$EXIST(REC)..

SIZE(REC)*sizes(rec) =E= VOLUME(REC);

Summer Workshop, Veszprém 2009


Slide21 l.jpg

INPUT AND OUTPUT FILES

The high level language GAMS (General Algebraic Modeling System) is interface for mathematical modeling with MIPSYN. Input and output files are written in GAMS language.

User has to define (input files):

1.) the superstructure (p_struct)

2.) all data (datalib.gms)

3.) list of chemical components (p_compon)

4.) physical properties of components (if component is not defined) (compon)

5.) initialization scheme for non-existing modules in process flowsheet (initlib.gms)

6.) the additional modules equations (my_model.dat)

7.) components and their physical properties (p_dbase.lib).

Output files: p_w.lst (listing file)

optimum.res (optimal solution)

p_b.res (MINLP iterations)

Summer Workshop, Veszprém 2009


Slide22 l.jpg

OPTIMIZATION

Raw material mass flow (corn, potato, molasses, etc.): 18 kg/s

Number of annual working hours: 8500

Objective: maximizing the profit

Depreciation

Product mass flow

Price of product

Need of utility

Price of raw material

Profit

Utility price

Depreciation period

Raw material mass flow

Investment was estimated by programme Aspen Icarus 2006.5.

Solvers:

for NLP suboptimization: local optimizer CONOPT 3,

for MILP optimization: optimizer GAMS/CPLEX 10.1.

Summer Workshop, Veszprém 2009


Slide23 l.jpg

RESULTS

Annual profit before taxes:

Summer Workshop, Veszprém 2009


Slide24 l.jpg

RESULTS

Optimal productivity of products:

Summer Workshop, Veszprém 2009


Slide25 l.jpg

RESULTS

Annual profit per kg of bioethanol (k€/a):

Summer Workshop, Veszprém 2009


Slide26 l.jpg

RESULTS

Operating costs (k€/a):

Summer Workshop, Veszprém 2009


Slide27 l.jpg

RESULTS

Payback period (a):

Summer Workshop, Veszprém 2009


Slide28 l.jpg

RESULTS

Efficiency (%):

Summer Workshop, Veszprém 2009


  • Login