1 / 70

The Next Three Weeks:

The Next Three Weeks:. Today: Sanger Sequencing Central Dogma Overview Mutation Unpacking Central Dogma Transcription (Mar 28) RNA Processing (Mar 28) Translation (Mar 28 / Apr 2) [+ Sculpting] Regulation of Gene Expression + Trivia (Apr 4) Tutorial (Apr 5) Review (Apr 9)

tea
Download Presentation

The Next Three Weeks:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Next Three Weeks: • Today: • Sanger Sequencing • Central Dogma Overview • Mutation • Unpacking Central Dogma • Transcription (Mar 28) • RNA Processing (Mar 28) • Translation (Mar 28 / Apr 2) [+ Sculpting] • Regulation of Gene Expression + Trivia (Apr 4) • Tutorial (Apr 5) • Review (Apr 9) • EXAM 3(Apr 11)

  2. Sanger Sequencing

  3. dideoxyNucleosideTriPhosphate

  4. Central Dogma Overview

  5. The Language of Genetics DNA Language vs. Protein Language Discuss: What does it mean to say that DNA is written in one language and Proteins are written in a different language?

  6. DNA Language 3’ – GTGCA – 5’5’ – CACGT – 3’ The language of DNA is written in nucleotides.

  7. Protein Language • A protein is a chain of amino acids.

  8. Connecting the Languages Transcribing versus Translating • Transcribe means: to rewrite Transcription Example: 3 parts gravel, 2 parts sand, 1 part cement. 3 parts gravel, 2 parts sand, 1 part cement.

  9. An Academic Transcript: A copy of your grades

  10. Connecting the Languages Transcribing versus Translating • Transcribe means: to rewrite • Translating means: to change language Translation Example: 3 parts gravel, 2 parts sand, 1 part cement.  3 partes de grava, 2 partes de arena, 1 parte de cemento. 三石二砂一水泥

  11. The Language of Genetics DNA Language vs. Protein Language • DNA is written in the language of nucleotides. • A message on DNA can be transcribed (copied) onto a piece of mRNA. • A message on mRNA can be translated into a chain of amino acids. • Proteins are written in the language of amino acids.

  12. DNA  mRNA  Amino Acids • Transcribing: • Replace Thymine with Uracil. • Transcribe from the template strand.

  13. DNA  mRNA  Amino Acids non -Template Strand 5’– CCACTGATAGACCTT –3’ 3’– GGTGACTATCTGGAA –5’ mRNA is made using the template strand… Template Strand

  14. DNA  mRNA  Amino Acids non -Template Strand 5’– CCACTGATAGACCTT –3’ 3’– GGTGACTATCTGGAA –5’ 5’– CCACUGAUAGACCUU –3’ The mRNA sequence is nearly identical to the non-template strand. Transcribing… complete. Template Strand mRNA

  15. The Translation Key:

  16. DNA  mRNA  Amino Acids Non-Templ: 5’– CCACTGATAGACCTT –3’ Template: 3’– GGTGACTATCTGGAA –5’ mRNA: 5’– CCACUGAUAGACCUU –3’ Leu Asp - Ile - Pro - Leu -

  17. Transcribe/Translate the Following Sequences: 3’– ATGTTTGAACTACAG–5’ 5’– TACAAACTTGATGTC–3’ 5’– CTGCGTGACTGCAAA –3’ 3’– GACGCACTGACGTTT –5’ 3’– CCGACTCACTGATGC –5’

  18. Important Properties of the Code • It is redundant: All amino acids except two are encoded by more than one codon. • It is unambiguous: One codon never codes for more than one amino acid. • It is nearly universal: With a few minor exceptions, all codons specify the same amino acids in all organisms. • It is conservative: The first two bases are usually identical when multiple codons specify the same amino acid.

  19. Mutations… changes to the code

  20. What’s a Mutation? A mutation is any permanent change in an organism’s DNA. Mutations result in new alleles!

  21. Point Mutations • Point mutations occur when the DNA polymerase inserts the wrong base into the newly synthesized strand of DNA.

  22. Point Mutations • Point mutations may be as a result of a substitution or an insertion/deletion and may be: • Silent mutations. • Does not change the amino acid sequence of the gene product. • Missensemutations. • Result in changes in the amino acid sequence of the encoded protein. • Nonsense mutations. • Results in a stop codon.

  23. Mutations and their impacts

  24. Mutations and their impacts

  25. Mutations and their impacts

  26. Mutations and their impacts

  27. Mutations and their impacts

  28. Describing a Mutation: Three Categories: • What happened? • Insertion, deletion, substitution. • What was the impact on the protein? • Missense, nonsense, silent • What was the reading frame? • Frameshift

  29. Two Examples of mutation • Beach Mice (from the text) • Taste in peas

  30. Peromyscuspolionotus

  31. Fact Sheet: Peromyscuspolionotus • Common names: Beach Mouse or Old Field Mouse. • Location: Southeastern U.S.A. • Habitat: Sand burrows in dunes or old fields. • Home-range: ~1000 m2 • Breeding: Monogamous pair-bonding. Litters of 2-8 pups, every 30 days. • Lifespan: 9-12 months.

  32. Fur Color:

  33. The mc1r Gene • The mc1r gene is located in Chromosome #16 in mammals. • It codes for the MC1R protein that aids in pigment synthesis.

  34. mc1r Gene Sequence 5’TGCCCACCCAGGGGCCTCAGAAGAGGCTTCTGGGTTCTCTCAACTCCACCTCCACAGCCACCCCTCACCTTGGACTGGCCACAAACCAGACAGGGCCTTGGTGCCTGCAGGTGTCTGTCCCGGATGGCCTCTTCCTCAGCCTGGGGCTGGTGAGTCTGGTGGAGAATGTGCTGGTCGTGATAGCCATCACCAAAAACCGCAACCTGCACTCGCCCATGTATTCCTTCATCTGCTGTCTGGCCCTGTCTGACCTGATGGTGAGTATAAGCTTGGTGCTGGAGACGGCTATCATCCTGCTGCTGGAGGCAGGGGCCCTGGTGACCCGGGCCGCTTTGGTGCAACAGCTGGACAATGTCATTGACGTGCTCATCTGTGGCTCCATGGTGTCCAGTCTTTGCTTCCTTGGTGTCATTGCCATAGACCGCTACATCTCCATCTTCTATGCATTACGTTATCACAGCATTGTGACGCTGCCCCGGGCACGACGGGCCATCGTGGGCATCTGGGTGGCCAGCATCTTCTTCAGCACCCTCTTTATCACCTACTACAACCACACAGCCGTCCTAATCTGCCTTGTCACTTTCTTTCTAGCCATGCTGGCCCTCATGGCAATTCTGTATGTCCACATGCTCACCCGAGCATACCAGCATGCTCAGGGGATTGCCCAGCTCCAGAAGAGGCAGGGCTCCACCCGCCAAGGCTTCTGCCTTAAGGGTGCTGCCACCCTTACTATCATTCTGGGAATTTTCTTCCTGTGCTGGGGCCCCTTCTTCCTGCATCTCACACTCATCGTCCTCTGCCCTCAGCACCCCACCTGCAGCTGCATCTTTAAGAACTTCAACCTCTACCTCGTTCTCATCATCTTCAGCTCCATCGTCGACCCCCTCATCTATGCTTTTCGGAGCCAGGAGCTCCGCATGACACTCAGGGAGGTGCTGCTGTGCTCCTGGTGA 3’

  35. mc1r Gene Sequence 5’TGCCCACCCAGGGGCCTCAGAAGAGGCTTCTGGGTTCTCTCAACTCCACCTCCACAGCCACCCCTCACCTTGGACTGGCCACAAACCAGACAGGGCCTTGGTGCCTGCAGGTGTCTGTCCCGGATGGCCTCTTCCTCAGCCTGGGGCTGGTGAGTCTGGTGGAGAATGTGCTGGTCGTGATAGCCATCACCAAAAACTGCAACCTGCACTCGCCCATGTATTCCTTCATCTGCTGTCTGGCCCTGTCTGACCTGATGGTGAGTATAAGCTTGGTGCTGGAGACGGCTATCATCCTGCTGCTGGAGGCAGGGGCCCTGGTGACCCGGGCCGCTTTGGTGCAACAGCTGGACAATGTCATTGACGTGCTCATCTGTGGCTCCATGGTGTCCAGTCTTTGCTTCCTTGGTGTCATTGCCATAGACCGCTACATCTCCATCTTCTATGCATTACGTTATCACAGCATTGTGACGCTGCCCCGGGCACGACGGGCCATCGTGGGCATCTGGGTGGCCAGCATCTTCTTCAGCACCCTCTTTATCACCTACTACAACCACACAGCCGTCCTAATCTGCCTTGTCACTTTCTTTCTAGCCATGCTGGCCCTCATGGCAATTCTGTATGTCCACATGCTCACCCGAGCATACCAGCATGCTCAGGGGATTGCCCAGCTCCAGAAGAGGCAGGGCTCCACCCGCCAAGGCTTCTGCCTTAAGGGTGCTGCCACCCTTACTATCATTCTGGGAATTTTCTTCCTGTGCTGGGGCCCCTTCTTCCTGCATCTCACACTCATCGTCCTCTGCCCTCAGCACCCCACCTGCAGCTGCATCTTTAAGAACTTCAACCTCTACCTCGTTCTCATCATCTTCAGCTCCATCGTCGACCCCCTCATCTATGCTTTTCGGAGCCAGGAGCTCCGCATGACACTCAGGGAGGTGCTGCTGTGCTCCTGGTGA 3’

  36. Single Substitution… 5’TGCCCACCCAGGGGCCTCAGAAGAGGCTTCTGGGTTCTCTCAACTCCACCTCCACAGCCACCCCTCACCTTGGACTGGCCACAAACCAGACAGGGCCTTGGTGCCTGCAGGTGTCTGTCCCGGATGGCCTCTTCCTCAGCCTGGGGCTGGTGAGTCTGGTGGAGAATGTGCTGGTCGTGATAGCCATCACCAAAAACTGCAACCTGCACTCGCCCATGTATTCCTTCATCTGCTGTCTGGCCCTGTCTGACCTGATGGTGAGTATAAGCTTGGTGCTGGAGACGGCTATCATCCTGCTGCTGGAGGCAGGGGCCCTGGTGACCCGGGCCGCTTTGGTGCAACAGCTGGACAATGTCATTGACGTGCTCATCTGTGGCTCCATGGTGTCCAGTCTTTGCTTCCTTGGTGTCATTGCCATAGACCGCTACATCTCCATCTTCTATGCATTACGTTATCACAGCATTGTGACGCTGCCCCGGGCACGACGGGCCATCGTGGGCATCTGGGTGGCCAGCATCTTCTTCAGCACCCTCTTTATCACCTACTACAACCACACAGCCGTCCTAATCTGCCTTGTCACTTTCTTTCTAGCCATGCTGGCCCTCATGGCAATTCTGTATGTCCACATGCTCACCCGAGCATACCAGCATGCTCAGGGGATTGCCCAGCTCCAGAAGAGGCAGGGCTCCACCCGCCAAGGCTTCTGCCTTAAGGGTGCTGCCACCCTTACTATCATTCTGGGAATTTTCTTCCTGTGCTGGGGCCCCTTCTTCCTGCATCTCACACTCATCGTCCTCTGCCCTCAGCACCCCACCTGCAGCTGCATCTTTAAGAACTTCAACCTCTACCTCGTTCTCATCATCTTCAGCTCCATCGTCGACCCCCTCATCTATGCTTTTCGGAGCCAGGAGCTCCGCATGACACTCAGGGAGGTGCTGCTGTGCTCCTGGTGA 3’ • Substituting 1 of 954 nucleotides • Cytosine to a Thymine (Pyrimidine  Pyrimidine) • Changed the mRNA codon from CGC to UGC

  37. The Translation Key:

  38. Consequence of Mutation • A single nucleotide mutation from a Cytosine to a Thymine leads to… • An amino acid change from an Arginine to a Cysteine Amino Acid Sequence Dark Fur: MPTQGPQKRLLGSLNSTSTATPHLGLATNQTGPWCLQVSIPDGLFLSLGLVSLVENVLVVIAITKNRNLHSPMYSFICCLALSDLMVSISLVLETAIILLLEAGALVTRAALVQQLDNVIDVLICGSMVSSLCFLGVIAIDRYISIFYALRYHSIVTLPRARRAIXGIWVASIFFSTLFITYYNHTAVLICLVTFFLAMLALMAXLYVHMLTRAYQHAQGIAQLQKRQGSTXQGFCLKGAXTLTIILGIFFLCWGPFFLHLTLIVLCPQHPTCSCIFKNFNLYLVLIIFSSIVDPLIYAFRSQELRMTLREVLLCSW Amino Acid Sequence Light Fur: MPTQGPQKRLLGSLNSTSTATPHLGLATNQTGPWCLQVSVPDGLFLSLGLVSLVENVLVVIAITKNCNLHSPMYSFICCLALSDLMVSISLVLETAIILLLEAGALVTRAALVQQLDNVIDVLICGSMVSSLCFLGVIAIDRYISIFYALRYHSIVTLPRARRAIVGIWVASIFFSTLFITYYNHTAVLICLVTFFLAMLALMAILYVHMLTRAYQHAQGIAQLQKRQGSTRQGFCLKGAATLTIILGIFFLCWGPFFLHLTLIVLCPQHPTCSCIFKNFNLYLVLIIFSSIVDPLIYAFRSQELRMTLREVLLCSW

  39. Changing 1 amino acid: • Arginine: • Strongest +charge • Very hydrophilic • Cysteine: • Not hydrophilic • Forms disulfide bonds

  40. Two Examples of mutation • Taste in peas • Beach Mice • Missense substitution mutation of one nucleotide CT • Changes one amino acid: Arginine  Cysteine • Changes the function of the MC1R protein

  41. Mendel’s Peas

More Related