1 / 17

Anal ytická geometria kvadratických útvarov

Anal ytická geometria kvadratických útvarov. Romana Fabiniová. Kužeľosečky Analytické vyjadrenie kružnice a kruhu. k= { X є R 2 ; I XS I = r }. y. k : ( x – s 1 ) 2 + ( y – s 2 ) 2 = r 2. X. y. stredová rovnica kružnice. s 2. S. x. s 1. x.

tauret
Download Presentation

Anal ytická geometria kvadratických útvarov

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analytická geometria kvadratických útvarov Romana Fabiniová

  2. KužeľosečkyAnalytické vyjadrenie kružnice a kruhu k= { Xє R2;IXSI = r } y k : (x – s1)2+ (y – s2 ) 2 = r 2 X y stredová rovnica kružnice s2 S x s1 x

  3. Všeobecná rovnica kružnice : x2 + y2 + ax + by + c = 0 1.Príklad : urč S a r danej kružnice: k: x2+ y2 – 6x + 4y – 12 = 0 x2 –6x + y2 + 4y –12 = 0 x2 – 6x + 9 – 9 + y2 + 4y + 4 – 4 – 12 = 0 ( x – 3 )2 + ( y + 2 )2 –25 = 0 ( x – 3 )2 + ( y + 2 )2 = 25 => S [ 3 , - 2] r = 5 2. Príklad : k: x2 + y2 + 6x – 4y – 23 = 0

  4. Riešenie: x2 + y2 + 6x – 4y – 23 = 0 x2 + 6x + y2 – 4y – 23 = 0 x2 + 6x + 9 – 9 + y2 – 4y + 4 – 4 – 23 = 0 (x + 3)2 + (y – 2)2 – 36 = 0 (x + 3)2 + (y – 2 )2 = 36 S[ 3,2] r = 6

  5. Vzájomná poloha priamky a kružnice A * * S * S S T k B k k B s n t p ∩ k = 0 nesečnica p ∩ k = {T} dotyčnica p ∩ k = { A, B} sečnica p: ax + by + c = 0 k: x2 + y2 +ax + by + c = 0 - hľadáme spoločné body priamky a kružnice =>riešime sústavu lineárnej a kvadratickej rovnice ak D < 0 => p je nesečnica D > 0 => p je dotyčnica D = 0 => p je sečnica

  6. 1.Príklad: p : 2x – y = 0 => y = 2x k: x2 + y2 – 3x + 2y – 3 = 0 X2 + ( 2x)2 – 3x + 2 (2x) -3 = 0 X2 + 4x2 – 3x + 4y – 3 = 0 5x2 + x – 3 = 0 D = b2 – 4ac = 1 -4.5.(-3)= 1+60 = 61 x ½ = -1 +/- 7,8 = 0,68 10 -0,88 p je sečnica A : y = 2.0,68 = 1,36 A[ 0,68 ; 1,36 ] B : y = 2.(-0,88) = - 1,76 B[-0,88 ; - 1,76] 2.Príklad : p: 2x – y – 6 = 0 k: x2 + y2 – 4x – 5y – 1 = 0

  7. Riešenie : p: 2x – y – 6 = 0 =>y = 2x - 6 k: x2 + y2 – 4x – 5y – 1 = 0 k: x2 + (2x – 6)2 – 4x – 5(2x – 6) – 1 = 0 x2 + 4x2 – 24x + 36 – 4x – 10x + 30 – 1 = 0 5x2 – 38x + 65 = 0 D = b2 – 4.a.c = 1444 – 4.5.65 = 144 x1/2 = 2,6 5 y1 = - 0,8 y2 = 4 A [ 2,6 ; - 0,8] B [ 5 , 4 ]

  8. Vzájomná poloha 2 kružníc 2. 3. S1 A 1. T I S1 S2 I * * r1 S2 S1 S2 r2 r2 * * r1 S2 S1 B r1 + r2 I S1 S2 I r1 + r2 = I S1 S2 I r1 + r2 I S1 S2 I k1∩ k2 = { A , B} * T * S2 S1 * * * S2 * S1 * S1 = S2 k1 ∩ k2 = 0 k1∩k2 = {T} k1 = k2

  9. Príklad : Vyšetri vzájomnú polohu týchto útvarov : k1 : x2 + y2 - 4x -18y + 75 = 0 } - k2 : x2 + y2 – 20y + 75 = 0 / .(-1) Úloha : nájdite spoločné body - 4x + 2y = 0 / : 2 - 2x + y = 0 => k2: x2 + 4x2 – 40x + 75 = 0 5x2 – 40x + 75 = 0 / : 5 x2 – 8x + 15 = 0 ( x – 3).(x – 5 ) = 0 x1 = 3 x2 = 5 y = 2x y1 = 2.3 = 6 y2 = 2.5 = 10 A[ 3,6] B[ 5,10]

  10. Rovnica dotyčnice k : x2 + y2 + ax + by + c = 0...... S [ s1,s2] r = T [ xT, yT] u (S) = T u = nT p: ax + by + c = 0 Tє k * u S T t 1.Príklad: t = ? k: x2 + y2 = 25 T [ 4, -3] t : 4x – 3y + c = 0 Tє t: 16 + 9 + c = 0 c = -25 t : 4x – 3y – 25 = 0 T є k ? 16+9 = 25 → S [ 0,0] r = 5 u (S)= T u (4,-3)=nT → → 2.Príklad: k: x2 + y2 – 6x – 10y + 9 = 0 C[ - 1,2] Úloha: napíš rovnicu dotyčnice

  11. Riešenie: k: x2 + y2 – 6x – 10y + 9 = 0 C[ -1,2] u (S) = C u ( - 4, -3)= nt -4x – 3y + c = 0 Cєk: 4 – 6 + c = 0 c = 2 → k: x2 – 6x + y2 – 10y + 9 = 0 x2 – 6x + 9 – 9 + y2 – 10y + 25 – 25 + 9 = 0 (x – 3)2 + (y – 5)2 = 25 S[ 3 , 5] r = 5 → → t : - 4x – 3y + 2 = 0

  12. Rovnica dotyčnice ku kružnici z bodu Postup: 1. SI;SI SR ° T1 TK 2. TK; TK (SI, ISSII) 3.T1,T2; k ∩ TK = { T1,T2} 4.t1, t2; t1 = RT1 t2 = RT2 r t2 α 2 (α * * R S t1 SI k T2

  13. Guľová plocha , guľa Guľová plocha H = { X є R3 I XSI = r } X Guľa G = { X є R3 IXSI < r} S G H stredova rovnica : (x- s1)2 + (y – s2)2 + (z – s3)2 = r2 všeobecná rovnica: x2 + y2 +z2 + Ax +By + Cz + D = 0

  14. Elipsa C x E = { X є R2 ; IXF1I + IXF2I = 2a} S…..........stred elipsy F1,F2........ohniská A, B.........hlavné body C, D.........vedľajšie body a.............hlavná poloos a = IASI = IBSI b.............vedľajšia poloos b = ICSI = IDSI e.............ohnisková vzdialenosť= excentricita e = IF1SI = IF2SI b a A B F1 a e F2 S D b2 + e2 = a2

  15. a є oX a є oY ↑ ↑ x2 b2 y2 a2 x2 y2 a2 b2 y + = 1 y = 1 + stredová rovnica elipsy : S[ 0,0] → → S x S x S[ s1,s2] a є oX a є oY ↑ (x – s1)2 b2 (y – s2)2 a2 (x – s1)2 a2 (y – s2)2 b2 y = 1 ↑ + = 1 + y s2 S s2 ← S ↓ → → s1 x s1 x

  16. všeobecná rovnica elipsy A = 0 A,B > 0 Ax2 + By2 + Cx + Dy + E = 0 1.Príklad : -charakterizuj elipsu,ktorá má takúto rovnicu: 9x2 + 25y2 – 54x + 100y – 44 = 0 9x2 – 54x + 25y2 + 100y – 44 = 0 9(x2 – 6x + 9 – 9) + 25 (y2 + 4y + 4 – 4 ) – 44 = 0 9(x – 3)2 + 25(y + 2)2 – 100 – 44 = 0 9(x – 3)2 + 25(y + 2)2 = 225 /:225 9(x – 3)2 225 2.príklad: 36x2 + 100y2 + 72x – 600y – 2664 = 0 a = 5 b = 3 e = 4 25(y + 2)2 225 + = 1 (x – 3)2 25 (y + 2)2 9 = 1 =>a // osX +

  17. Riešenie : 36x2 + 100y2 + 72x – 600y – 2664 = 0 36x2 + 72x + 100y2 – 600y – 2664 = 0 36(x2 + 2x) + 100(y2 – 6y) – 2664 = 0 36(x2 + 2x + 1 – 1) + 100(y2 - 6y + 9 – 9) – 2664 = 0 36(x + 1)2 – 36 + 100(y – 3)2 -900 – 2664 = 0 36(x + 1)2 + 100(y – 3)2 = 3600 36(x + 1)2 3600 100(y – 3)2 3600 = 1 + (x + 1)2 100 (y – 3)2 36 = 1 • a // os X + a = 10 b = 6

More Related