This presentation is the property of its rightful owner.
1 / 50

我們在第一冊已經學過數線，知道數線上任意一點都可以用一個數來表示它的位置，也就是說，數線上的每一個點都有一個坐標，所以數線也稱為直線坐標系。 PowerPoint PPT Presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

• ()()

• () O x x ()() y y ()()x y x y O

• x y

• x ()

• y ()

• x y

• (a , b)(a , b)()

• O x () 4 P P y () 3 A (4 , 3) A () A (4 , 3) A(4 , 3) 4 A x 3 A y

• O x () 3 Q Q y () 4 B B (3 , 4) B(3 , 4) O O(0 , 0)

y

P(m,n)

n

m

n

x

O

m

• (m , n) P (m , n) P P(m , n) m P x m P y n P y n P x

• (2 , 1) P P x y P x P y

-1

2

1

2

• () C C x C x 3 C y C y 4 C (3 , 4)

• PQRS

• P x

• x 2

• P y

• y 3

• P (2 , 3)

• Q (4 , 2)

• R (3 , 1)

• S (3 , )

( , 2)

• ABCD

• A

• B

• C

• D

(2 , 1)

(2 , 2)

(4 , 3)

• A(3 , 4)B(4 , 2)C(,3)

A(3 , 4)x 3 x ()3 P y 4 P y() 4 A

B(4 , 2)x 4 x () 4 Q y 2 Q y() 2 B

• C(,3) x R(, 0) R x y S(0 , 3) S yC

• 2 4 3 A

• D(3 , 2)

• E(, 2)

• F(3 , )

• G(2 , 3)

• H(2 , 4)

• (3 , 2)(2 , 3)

(3 , 2)(2 , 3)

• (3 , 2)(2 , 3) mn (m , n)(n , m)

• A(3 , 0)B(4 , 0)C(0 , 2)D(0 , 3)

A(3 , 0)y 0 x 3

B(4 , 0) y 0 x 4

C(0 , 2) x 0 y 2

D(0 , 3)x 0 y 3

• 3 (m , 0) x

• (0 , n) y

• x (m , 0)

• y (0 , n)

• O(0 , 0)

• P(5 , 0)

• Q(0 , 5)

• R(1 , 0)

• S(0 , )

• A(0 , 6) 2 8 B B

• C 6 3 D(5 , 1) C

• 2 y 628

• 8 x 088

• B (8 , 8)

• D C 3 6

• 3 y 132

• 6 x 561

• C

• (1 , 2)

• P(3 , 5) 4 2 Q Q

• R 5 5 S(3 , 4) R

Q(32 , 54)(5 , 1)

R(35 , 45)(8 , 9)

x x 2

y y 1

B (2 , 1)D (2 , 3)

• ABCD A (2 , 3)C

• (2 , 1) BD

• 5 P P x Q Q y

P x 2Q y 1

• O 2 O (0 , 0)PQRS O S (2 , 0) PQR

P (0 , 2)

Q (2 , 0)

R (0 , 2)

• O

• x y 5

• ()

• 1. x y

• x y

• 2. x y

• x y

• 3. x y

• x y

• 4. x y

• x y

• 5. x y 0

• y 0 x

• 6. y x 0

• x 0 y

( , ) x y ( , ) x y

• A(5 , 8)B(7 , 4)C(, 3)D(, )

• E(6 , 0)F(0 , 8)

A ( , ) A

B ( , ) B

C ( , ) C

D ( , ) D

E y 0 E x

F x 0 F y

• M(3 , 2)N(, 3)P( , 6)Q(4 , 5)

• S(, 0)T(0 , )

• A(s , t)

• s t

• B(t ,s)C(s , )D(st , t2)

• A A

• ( ,) s t

• t s

• B ( , )

• B

• s

• C ( , )

• C

• st t2

• D ( , )

• D

• P(a , b) Q(a ,b)R(b2 , a)

P P ( , )

a b

Q(a ,b)( , ) Q R(b2 , a)( , ) R

• O x y

• (m , n) P (m , n) P P(m , n) m P x m P y n P y n P x

• (3 , 2) A 3 A x 2 A y A x 2 y 3

• mn (m , n)(n , m)

• (1 , 2)(2 , 1)

• (m , 0) x x (m , 0)

• (0.3 , 0)(5 , 0)(, 0) x

• (0 , n) y y (0 , n)

• (0 , 7)(0 , 2.4)(0 , ) y

• x y

• x

• y

• A(2 , 4) B(1 , 2) C(2 , 0)D(0 , 5)

• E(, 2) F(, 13)

• P(1 , 3) 2 2 Q Q

• R 4 5 Q R

Q(12 , 32)(3 , 5)

R(35 , 54)(2 , 9)

A(, )( , ) A

B(t2 , st)( , ) B

• s0t0 A(,)B(t2 , st)